Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1800-1808.DOI: 10.3778/j.issn.1673-9418.2104084
• Artificial Intelligence • Previous Articles Next Articles
YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu
Received:
2021-03-26
Revised:
2021-05-31
Online:
2022-08-01
Published:
2021-06-03
About author:
YU Huilin, born in 1997, M.S. candidate. Her research interests include knowledge graph reasoning and information extraction.Supported by:
于慧琳, 陈炜, 王琪, 高建伟, 万怀宇
作者简介:
于慧琳(1997—),女,黑龙江佳木斯人,硕士研究生,主要研究方向为知识图谱推理、信息抽取。基金资助:
CLC Number:
YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808.
于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104084
数据集 | #实体数 | #关系数 | #三元组 | #任务 |
---|---|---|---|---|
FB15K-237 | 14 505 | 237 | 310 116 | 10 |
NELL-995 | 75 492 | 200 | 154 213 | 10 |
Table 1 Experimental datasets
数据集 | #实体数 | #关系数 | #三元组 | #任务 |
---|---|---|---|---|
FB15K-237 | 14 505 | 237 | 310 116 | 10 |
NELL-995 | 75 492 | 200 | 154 213 | 10 |
FB15K-237 | TransE | TransR | DeepPath | MINERVA | M-Walk | RLH | SubGLP |
---|---|---|---|---|---|---|---|
personNationality | 0.641 | 0.720 | 0.823 | 0.746 | 0.793 | 0.821 | 0.855 |
filmLanguage | 0.642 | 0.641 | 0.670 | 0.603 | 0.623 | 0.682 | 0.716 |
birthPlace | 0.403 | 0.417 | 0.531 | 0.641 | — | — | 0.710 |
filmDirector | 0.386 | 0.399 | 0.441 | 0.589 | 0.618 | 0.683 | 0.654 |
filmWrittenBy | 0.563 | 0.605 | 0.457 | 0.675 | 0.672 | 0.725 | 0.793 |
musicianOrigin | 0.361 | 0.378 | 0.514 | 0.534 | 0.583 | 0.568 | 0.605 |
tvLanguage | 0.804 | 0.906 | 0.969 | 0.860 | — | — | 0.988 |
capitalOf | 0.554 | 0.493 | 0.783 | 0.729 | 0.743 | 0.737 | 0.803 |
organizationFounded | 0.390 | 0.339 | 0.309 | 0.475 | — | — | 0.600 |
teamSports | 0.896 | 0.784 | 0.955 | 0.960 | — | — | 0.906 |
Average | 0.564 | 0.568 | 0.645 | 0.681 | 0.672 | 0.703 | 0.763 |
Table 2 Link prediction results (MAP) on FB15K-237 datasets
FB15K-237 | TransE | TransR | DeepPath | MINERVA | M-Walk | RLH | SubGLP |
---|---|---|---|---|---|---|---|
personNationality | 0.641 | 0.720 | 0.823 | 0.746 | 0.793 | 0.821 | 0.855 |
filmLanguage | 0.642 | 0.641 | 0.670 | 0.603 | 0.623 | 0.682 | 0.716 |
birthPlace | 0.403 | 0.417 | 0.531 | 0.641 | — | — | 0.710 |
filmDirector | 0.386 | 0.399 | 0.441 | 0.589 | 0.618 | 0.683 | 0.654 |
filmWrittenBy | 0.563 | 0.605 | 0.457 | 0.675 | 0.672 | 0.725 | 0.793 |
musicianOrigin | 0.361 | 0.378 | 0.514 | 0.534 | 0.583 | 0.568 | 0.605 |
tvLanguage | 0.804 | 0.906 | 0.969 | 0.860 | — | — | 0.988 |
capitalOf | 0.554 | 0.493 | 0.783 | 0.729 | 0.743 | 0.737 | 0.803 |
organizationFounded | 0.390 | 0.339 | 0.309 | 0.475 | — | — | 0.600 |
teamSports | 0.896 | 0.784 | 0.955 | 0.960 | — | — | 0.906 |
Average | 0.564 | 0.568 | 0.645 | 0.681 | 0.672 | 0.703 | 0.763 |
NELL-995 | TransE | TransR | DeepPath | MINERVA | M-Walk | RLH | SubGLP |
---|---|---|---|---|---|---|---|
athleteHomeStadium | 0.718 | 0.722 | 0.846 | 0.928 | 0.919 | 0.934 | 0.962 |
bornLocation | 0.712 | 0.812 | 0.755 | 0.782 | 0.842 | 0.873 | 0.929 |
athletePlaysSport | 0.876 | 0.963 | 0.917 | 0.986 | 0.983 | 0.974 | 0.906 |
teamPlaySports | 0.761 | 0.814 | 0.696 | 0.875 | 0.884 | 0.891 | 0.876 |
orgHeadquaterCity | 0.620 | 0.657 | 0.790 | 0.945 | 0.950 | 0.936 | 0.915 |
worksFor | 0.677 | 0.692 | 0.699 | 0.827 | 0.827 | 0.826 | 0.836 |
athletePlaysForTeam | 0.627 | 0.673 | 0.721 | 0.826 | 0.847 | 0.869 | 0.949 |
athletePlaysInLeague | 0.773 | 0.912 | 0.960 | 0.952 | 0.978 | 0.946 | 0.958 |
personLeadsOrg | 0.751 | 0.772 | 0.790 | 0.830 | 0.812 | 0.814 | 0.936 |
orgHiredPerson | 0.719 | 0.737 | 0.738 | 0.870 | 0.888 | 0.895 | 0.866 |
Average | 0.723 | 0.775 | 0.791 | 0.882 | 0.893 | 0.896 | 0.913 |
Table 3 Link prediction results (MAP) on NELL-995 datasets
NELL-995 | TransE | TransR | DeepPath | MINERVA | M-Walk | RLH | SubGLP |
---|---|---|---|---|---|---|---|
athleteHomeStadium | 0.718 | 0.722 | 0.846 | 0.928 | 0.919 | 0.934 | 0.962 |
bornLocation | 0.712 | 0.812 | 0.755 | 0.782 | 0.842 | 0.873 | 0.929 |
athletePlaysSport | 0.876 | 0.963 | 0.917 | 0.986 | 0.983 | 0.974 | 0.906 |
teamPlaySports | 0.761 | 0.814 | 0.696 | 0.875 | 0.884 | 0.891 | 0.876 |
orgHeadquaterCity | 0.620 | 0.657 | 0.790 | 0.945 | 0.950 | 0.936 | 0.915 |
worksFor | 0.677 | 0.692 | 0.699 | 0.827 | 0.827 | 0.826 | 0.836 |
athletePlaysForTeam | 0.627 | 0.673 | 0.721 | 0.826 | 0.847 | 0.869 | 0.949 |
athletePlaysInLeague | 0.773 | 0.912 | 0.960 | 0.952 | 0.978 | 0.946 | 0.958 |
personLeadsOrg | 0.751 | 0.772 | 0.790 | 0.830 | 0.812 | 0.814 | 0.936 |
orgHiredPerson | 0.719 | 0.737 | 0.738 | 0.870 | 0.888 | 0.895 | 0.866 |
Average | 0.723 | 0.775 | 0.791 | 0.882 | 0.893 | 0.896 | 0.913 |
FB15K-237 | SubGLP-nod | SubGLP-edg | SubGLP | NELL-995 | SubGLP-nod | SubGLP-edg | SubGLP |
---|---|---|---|---|---|---|---|
birthPlace | 0.708 | 0.679 | 0.710 | athletePlaysInLeague | 0.941 | 0.939 | 0.958 |
personNationality | 0.842 | 0.836 | 0.855 | athleteHomeStadium | 0.952 | 0.953 | 0.962 |
filmDirector | 0.639 | 0.627 | 0.654 | athletePlaysSport | 0.957 | 0.936 | 0.906 |
filmWrittenBy | 0.803 | 0.801 | 0.793 | teamPlaySports | 0.862 | 0.870 | 0.876 |
filmLanguage | 0.706 | 0.702 | 0.716 | orgHeadquaterCity | 0.913 | 0.906 | 0.915 |
tvLanguage | 0.978 | 0.975 | 0.988 | worksFor | 0.835 | 0.830 | 0.836 |
teamSports | 0.896 | 0.897 | 0.906 | athletePlaysForTeam | 0.957 | 0.882 | 0.949 |
capitalOf | 0.773 | 0.759 | 0.803 | bornLocation | 0.898 | 0.920 | 0.929 |
organizationFounded | 0.524 | 0.523 | 0.600 | personLeadsOrg | 0.934 | 0.931 | 0.936 |
musicianOrigin | 0.575 | 0.554 | 0.605 | orgHiredPerson | 0.860 | 0.825 | 0.866 |
Average | 0.744 | 0.735 | 0.763 | Average | 0.911 | 0.899 | 0.913 |
Table 4 Ablation experiment results
FB15K-237 | SubGLP-nod | SubGLP-edg | SubGLP | NELL-995 | SubGLP-nod | SubGLP-edg | SubGLP |
---|---|---|---|---|---|---|---|
birthPlace | 0.708 | 0.679 | 0.710 | athletePlaysInLeague | 0.941 | 0.939 | 0.958 |
personNationality | 0.842 | 0.836 | 0.855 | athleteHomeStadium | 0.952 | 0.953 | 0.962 |
filmDirector | 0.639 | 0.627 | 0.654 | athletePlaysSport | 0.957 | 0.936 | 0.906 |
filmWrittenBy | 0.803 | 0.801 | 0.793 | teamPlaySports | 0.862 | 0.870 | 0.876 |
filmLanguage | 0.706 | 0.702 | 0.716 | orgHeadquaterCity | 0.913 | 0.906 | 0.915 |
tvLanguage | 0.978 | 0.975 | 0.988 | worksFor | 0.835 | 0.830 | 0.836 |
teamSports | 0.896 | 0.897 | 0.906 | athletePlaysForTeam | 0.957 | 0.882 | 0.949 |
capitalOf | 0.773 | 0.759 | 0.803 | bornLocation | 0.898 | 0.920 | 0.929 |
organizationFounded | 0.524 | 0.523 | 0.600 | personLeadsOrg | 0.934 | 0.931 | 0.936 |
musicianOrigin | 0.575 | 0.554 | 0.605 | orgHiredPerson | 0.860 | 0.825 | 0.866 |
Average | 0.744 | 0.735 | 0.763 | Average | 0.911 | 0.899 | 0.913 |
[1] | CHEN X, JIA S, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. |
[2] | HU S, ZOU L, YU J X, et al. Answering natural language questions by subgraph matching over knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30: 824-837. |
[3] | PALUMBO E, RIZZO G, TRONCY R.Entity2rec: learning user-item relatedness from knowledge graphs for Top-N item recommendation[C]// Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 32-36. |
[4] | CORCOGLIONITI F, DRAGONI M, ROSPOCHER M, et al. Knowledge extraction for information retrieval[C]// Procee-dings of the 2016 European Semantic Web Conference, Crete, May 29-Jun 2, 2016. Cham:Springer, 2016: 317-333. |
[5] | BORDES A, USUNIER N, GARCIA-DURAN A, et al. Tran-slating embeddings for modeling multi-relational data[C]// Proceedings of the 2013 Neural Information Processing Sys-tems, Lake Tahoe, Dec 5-8, 2013. Piscataway: IEEE, 2013: 2787-2795. |
[6] | LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial In-telligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. |
[7] | DAS R, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Apr 3- 7, 2017. Stroudsburg: ACL, 2017: 132-141. |
[8] | NEELAKANTAN A, ROTH B, MCCALLUM A. Composi-tional vector space models for knowledge base completion[C]// Proceedings of the 53rd Annual Meeting of the Asso-ciation for Computational Linguistics and the 7th Interna-tional Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 156-166. |
[9] | XIONG W, HOANG T, WANG W Y. DeepPath: a reinfor-cement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Me-thods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 564-573. |
[10] | DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning[J]. |
[11] | MORRIS C, RITZERT M, FEY M, et al. Weisfeiler and Leman go neural: higher-order graph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Edu-cational Advances in Artificial Intelligence, Honolulu, Jan 27 - Feb 1, 2019. Menlo Park: AAAI, 2019: 4602-4609. |
[12] | SCHOENMACKERS S, DAVIS J, ETZIONI O, et al. Lear-ning first-order horn clauses from Web text[C]// Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Oct 9-11, 2010. Stroudsburg: ACL, 2010: 1088-1098. |
[13] | SCHULTE O, QIAN Z, KIRKPATRICK A E, et al. Fast learning of relational kernels[J]. Machine Learning, 2010, 78(3): 305-342. |
[14] | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. |
[15] | JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan-guage Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696. |
[16] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
[17] | LI Z, JIN X, GUAN S, et al. Path reasoning over knowledge graph: a multi-agent and reinforcement learning based me-thod[C]// Proceedings of the 2018 IEEE International Confer-ence on Data Mining, Singapore, Nov 17-20, 2018. Piscata-way: IEEE, 2018: 929-936. |
[18] | SHEN Y L, CHEN J S, HUANG P, et al. M-walk: learning to walk over graphs using Monte Carlo tree search[C]// Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 6787-6798. |
[19] | WAN G J, PAN S R, GONG C, et al. Reasoning like human: hierarchical reinforcement learning for knowledge graph reasoning[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, 2021: 1926-1932. |
[20] | ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. |
[21] | DOUGLAS B L. The Weisfeiler-Lehman method and graph isomorphism testing[J]. |
[22] | GAO H Y, JI S W. Graph U-Nets[C]// Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 2083-2092. |
[23] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Drop-out: a simple way to prevent neural networks from over-fitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
[24] | POWLEY E. Monte Carlo tree search[M]. Berlin, Heidelberg: Springer, 2012. |
[1] | SA Rina, LI Yanling, LIN Min. Survey of Question Answering Based on Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1727-1741. |
[2] | TIAN Xuan, CHEN Hangxue. Survey on Applications of Knowledge Graph Embedding in Recommendation Tasks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705. |
[3] | HAN Yi, QIAO Linbo, LI Dongsheng, LIAO Xiangke. Review of Knowledge-Enhanced Pre-trained Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1439-1461. |
[4] | GUO Xiaowang, XIA Hongbin, LIU Yuan. Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1343-1353. |
[5] | DONG Wenbo, SUN Shiliang, YIN Minzhi. Research and Development of Medical Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1193-1213. |
[6] | WANG Baoliang, PAN Wencai. Two-Terminal Neighbor Information Fusion Recommendation Algorithm Based on Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1354-1361. |
[7] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[8] | ZHANG Zichen, YUE Kun, QI Zhiwei, DUAN Liang. Incremental Construction of Time-Series Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 598-607. |
[9] | JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan. Isomorphic Graph Classification Model Based on Reconstruction Error [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 185-193. |
[10] | LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. |
[11] | YUAN Lining, LI Xin, WANG Xiaodong, LIU Zhao. Graph Embedding Models: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87. |
[12] | WU Zhengyang, TANG Yong, LIU Hai. Survey of Personalized Learning Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. |
[13] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[14] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[15] | WANG Xiaodong, ZHAO Yining, XIAO Haili, WANG Xiaoning, CHI Xuebin. User Behavior Analysis with RNN and Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 838-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/