Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 296-304.DOI: 10.3778/j.issn.1673-9418.2107031
• Surveys and Frontiers • Previous Articles Next Articles
ZHAO Shan, LUO Rui, CAI Zhiping+()
Received:
2021-07-08
Revised:
2021-09-22
Online:
2022-02-01
Published:
2021-09-28
About author:
ZHAO Shan, born in 1990, Ph.D. candidate. His research interest is natural language processing.Supported by:
通讯作者:
+ E-mail: zpcai@nudt.edu.cn作者简介:
赵山(1990—),男,安徽六安人,博士研究生,主要研究方向为自然语言处理。基金资助:
CLC Number:
ZHAO Shan, LUO Rui, CAI Zhiping. Survey of Chinese Named Entity Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304.
赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2107031
数据集名称 | 年份 | 来源 | 实体类型数量 | 网址 |
---|---|---|---|---|
OntoNotes | 2007—2012 | Magazine,news,Web等 | 18 | https://catalog.ldc.upenn.edu/LDC2013T19 |
Resume | 2018 | SinaFinance text | 8 | https://github.com/jiesutd/LatticeLSTM |
2015 | social media | 4 | https://github.com/quincyliang/nlp-public-dataset/tree/master/ner-data/weibo | |
MSRA | 2006 | news | 3 | https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0&tab=BB08J2 |
E-commerce | 2019 | e-commerce | 2 | https://github.com/PhantomGrapes/MultiDigraphNER |
Table 1 Common NER datasets
数据集名称 | 年份 | 来源 | 实体类型数量 | 网址 |
---|---|---|---|---|
OntoNotes | 2007—2012 | Magazine,news,Web等 | 18 | https://catalog.ldc.upenn.edu/LDC2013T19 |
Resume | 2018 | SinaFinance text | 8 | https://github.com/jiesutd/LatticeLSTM |
2015 | social media | 4 | https://github.com/quincyliang/nlp-public-dataset/tree/master/ner-data/weibo | |
MSRA | 2006 | news | 3 | https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0&tab=BB08J2 |
E-commerce | 2019 | e-commerce | 2 | https://github.com/PhantomGrapes/MultiDigraphNER |
[1] | 郭喜跃, 何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015, 42(2):14-17. |
GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2):14-17. | |
[2] | 邹晶. 基于深度学习的实体与关系联合提取方法研究[D]. 成都: 电子科技大学, 2019. |
ZOU J. Research on joint extraction method of entity and relation based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
[3] | ZHAO S, CAI Z P, CHEN H W, et al. Adversarial training based lattice LSTM for Chinese clinical named entity recognition[J]. Journal of Biomedical Informatics, 2019, 99:103290. |
[4] | 石春丹, 秦岭. 基于BGRU-CRF的中文命名实体识别方法[J]. 计算机科学, 2019, 46(9):237-242. |
SHI C D, QIN L. Chinese named entity recognition method based on BGRU-CRF[J]. Computer Science, 2019, 46(9):237-242. | |
[5] | 卓玛措, 桑杰端珠, 才让加. 基于深度学习的古汉语命名实体识别研究[J]. 计算机科学与应用, 2020, 10(7):1359-1366. |
ZHUO M C, SANGJIE D Z, CAI R J. Ancient Chinese named entity recognition based on deeping learning[J]. Computer Science and Application, 2020, 10(7):1359-1366. | |
[6] | 孙长志. 基于深度学习的联合实体关系抽取[D]. 上海: 华东师范大学, 2019. |
SUN C Z. Joint entity relation extraction with deep learning[D]. Shanghai: East China Normal University, 2019. | |
[7] | CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 167-176. |
[8] | BUNESCU R C, MOONEY R J. A shortest path dependency kernel for relation extraction[C]//Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, Oct 6-8, 2005. Stroudsburg: ACL, 2005: 724-731. |
[9] |
DIEFENBACH D, LÓPEZ V, SINGH K D, et al. Core techniques of question answering systems over knowledge bases: a survey[J]. Knowledge and Information Systems, 2018, 55(3):529-569.
DOI URL |
[10] | YANG J, TENG Z Y, ZHANG M S, et al. Combining discrete and neural features for sequence labeling[C]//LNCS 9623: Proceedings of the 17th International Conference on Computational Linguistics and Intelligent Text Processing, Konya, Apr 3-9, 2016. Cham: Springer, 2016: 140-154. |
[11] | PENG N Y, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 548-554. |
[12] | HE H F, SUN X. F-score driven max margin neural network for named entity recognition in Chinese social media[J]. arXiv:1611.04234, 2016. |
[13] | LIU W, XU T G, XU Q H, et al. An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2379-2389. |
[14] | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1554-1564. |
[15] | HUMPHREYS K, GAIZAUSKAS R, AZZAM S, et al. University of Sheffield: description of the LaSIE-II system as used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998: 1-20. |
[16] | KRUPKA G R, HAUSMAN K. IsoQuest Inc.: description of the NetOwl™ extractor system as used for MUC-7[C]// Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998: 1-10. |
[17] | BLACK W J, RINALDI F, MOWATT D. FACILE: description of the NE system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29- May 1, 1998. Stroudsburg: ACL, 1998: 1-10. |
[18] | AONE C, HALVERSON L, HAMPTON T, et al. SRA: description of the IE2 system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998: 1-14. |
[19] |
NADEAU D, SEKINE S. A survey of named entity recog-nition and classification[J]. Lingvisticae Investigationes, 2007, 30(1):3-26.
DOI URL |
[20] | COLLINS M, SINGER Y. Unsupervised models for named entity classification[C]//Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, College Park, Jun 21-22, 1999. Stroudsburg: ACL, 1999: 1-11. |
[21] | NADEAU D, TURNEY P D, MATWIN S. Unsupervised named-entity recognition: generating gazetteers and resolving ambiguity[C]//LNCS 4013: Proceedings of the 19th Con-ference of the Canadian Society for Computational Studies of Intelligence, Québec City, Jun 7-9, 2006. Berlin, Heid-elberg: Springer, 2006: 266-277. |
[22] |
EDDY S R. Hidden Markov models[J]. Current Opinion in Structural Biology, 1996, 6(3):361-365.
DOI URL |
[23] | QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1):81-106. |
[24] | KAPUR J N. Maximum-entropy models in science and engineering[M]. New York: John Wiley & Sons, Inc., 1989. |
[25] | SUTHAHARAN S. Support vector machine[M]. Cham: Springer, 2016. |
[26] | LAFFERTY J D, MCCALLUM A, PEREIRA F C. Conditional random fields: probabilistic models for segmenting and labe-ling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289. |
[27] | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12:2493-2537. |
[28] | YADAV V, BETHARD S. A survey on recent advances in named entity recognition from deep learning models[J]. arXiv:1910.11470, 2019. |
[29] | MA X Z, HOVY E H. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[J]. arXiv:1603.01354, 2016. |
[30] | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv:1802.05365, 2018. |
[31] | GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4982-4988. |
[32] | GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 1040-1050. |
[33] | SUI D B, CHEN Y B, LIU K, et al. Leverage lexical know-ledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3828-3838. |
[34] | DING R X, XIE P J, ZHANG X Y, et al. A neural multi-digraph model for Chinese NER with gazetteers[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1462-1467. |
[35] | YAN H, DENG B C, LI X N, et al. TENER: adapting transformer encoder for name entity recognition[J]. arXiv: 1911.04474, 2019. |
[36] | MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 5951-5960. |
[37] | LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6836-6842. |
[38] | ZHAO S, HU M H, CAI Z P, et al. Dynamic modeling cross-and self-lattice attention network for Chinese NER[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14515-14523. |
[39] | WU S, SONG X N, FENG Z H. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 1529-1539. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | HUANG Hao, GE Hongwei. Deep Residual Expression Recognition Network to Enhance Inter-class Discrimination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849. |
[3] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[4] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[5] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[6] | OU Yangliu, HE Xi, QU Shaojun. Fully Convolutional Neural Network with Attention Module for Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. |
[7] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[8] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
[9] | ZHANG Shaowei, WANG Xin, CHEN Zirui, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Supervised Joint Entity Relation Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733. |
[10] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[11] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[12] | ZHUO Tiantian, SANG Qingbing. Application of Attention Mechanism and Composite Convolution in Handwriting Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897. |
[13] | MA Jinlin, ZHANG Yu, MA Ziping, MAO Kaiji. Research Progress of Lightweight Neural Network Convolution Design [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528. |
[14] | PEI Lishen, LIU Shaobo, ZHAO Xuezhuan. Review of Human Behavior Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 305-322. |
[15] | LI Zhaoyang, LI Lin, TAO Xiaohui. Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Fore-casting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 384-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/