Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 713-733.DOI: 10.3778/j.issn.1673-9418.2107114
• Surveys and Frontiers • Previous Articles Next Articles
ZHANG Shaowei1, WANG Xin1,2,+(), CHEN Zirui1, WANG Lin3, XU Dawei3, JIA Yongzhe1,3
Received:
2021-07-21
Revised:
2022-03-04
Online:
2022-04-01
Published:
2022-04-14
About author:
ZHANG Shaowei, born in 1996, M.S. candidate. His research interests include knowledge repre-sentation learning and knowledge graph construc-tion.Supported by:
张少伟1, 王鑫1,2,+(), 陈子睿1, 王林3, 徐大为3, 贾勇哲1,3
通讯作者:
+ E-mail: wangx@tju.edu.cn作者简介:
张少伟(1996—),男,硕士研究生,主要研究方向为知识表示学习、知识图谱构建。基金资助:
CLC Number:
ZHANG Shaowei, WANG Xin, CHEN Zirui, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Supervised Joint Entity Relation Extraction Methods[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733.
张少伟, 王鑫, 陈子睿, 王林, 徐大为, 贾勇哲. 有监督实体关系联合抽取方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 713-733.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2107114
符号 | 描述 |
---|---|
| 给定的文本句子 |
| 预先定义的关系类型集合 |
| 预先定义的实体类型集合 |
| 句子中的单词/第 |
| 关系类型 |
| 实体类型 |
| 头实体 |
| 尾实体 |
| 嵌入向量 |
| 隐藏状态向量/ |
| 参数矩阵/第 |
| 参数向量/第 |
Table 1 List of notations
符号 | 描述 |
---|---|
| 给定的文本句子 |
| 预先定义的关系类型集合 |
| 预先定义的实体类型集合 |
| 句子中的单词/第 |
| 关系类型 |
| 实体类型 |
| 头实体 |
| 尾实体 |
| 嵌入向量 |
| 隐藏状态向量/ |
| 参数矩阵/第 |
| 参数向量/第 |
类型 | 优点 | 缺点 | 文献 | 描述 |
---|---|---|---|---|
整数线性规划 | 通用性和灵活性,线性公式可以表示任意约束类型 | 耗时,子任务间的交互性较低 | [ | 根据多个局部分类器的结果求解全局最优分配策略 |
卡片金字塔模型 | 通过图结构实现全局和局部信息交互,使得抽取结果更准确 | 由多个局部模型构成,结构复杂 | [ | 构造图结构,将联合抽取转换为图节点标注问题 |
概率图模型 | 充分利用子任务间的交互,灵活地融入其他类型特征 | 需要计算大量概率分布 | [ | 将实体关系表示成概率图,求解实体关系的最大后验概率 |
结构化预测 | 建立单一的联合学习模型 | 直接进行结构预测,计算复杂度高 | [ | 采用单一的图或表结构表示实体关系,模型直接预测候选结构 |
Table 2 Summary of joint extraction methods based on feature engineering
类型 | 优点 | 缺点 | 文献 | 描述 |
---|---|---|---|---|
整数线性规划 | 通用性和灵活性,线性公式可以表示任意约束类型 | 耗时,子任务间的交互性较低 | [ | 根据多个局部分类器的结果求解全局最优分配策略 |
卡片金字塔模型 | 通过图结构实现全局和局部信息交互,使得抽取结果更准确 | 由多个局部模型构成,结构复杂 | [ | 构造图结构,将联合抽取转换为图节点标注问题 |
概率图模型 | 充分利用子任务间的交互,灵活地融入其他类型特征 | 需要计算大量概率分布 | [ | 将实体关系表示成概率图,求解实体关系的最大后验概率 |
结构化预测 | 建立单一的联合学习模型 | 直接进行结构预测,计算复杂度高 | [ | 采用单一的图或表结构表示实体关系,模型直接预测候选结构 |
文献 | 模型架构 | 描述 |
---|---|---|
[ | 双向LSTM+依赖树 | 两个子任务都采用双向LSTM网络和前馈神经网络实现 |
[ | 双向LSTM+卷积神经网络 | 卷积神经网络抽取关系类型时融入了实体间的局部句子信息 |
[ | 双向LSTM | 两个子任务均采用LSTM网络实现 |
[ | 双向LSTM+CRF | 采用CRF获得存在候选关系的实体,减少了冗余实体的影响 |
[ | 双向LSTM+自注意力机制 | 将每个关系类型当作独立的子空间,用自注意力机制获取更细粒度的语义关联 |
[ | 双向LSTM+双向GCN | 第一阶段预测出所有实体对,第二阶段构造带权重的GCN预测关系 |
[ | 双向LSTM+注意力机制 | 用注意力机制获取所有可能的跨度,跨度信息通过前馈神经网络实现关系抽取 |
[ | 双向LSTM+注意力机制 | 跨度类型信息和关系信息采用集束搜索的方式进行评估 |
[ | 双向LSTM+动态跨度图 | 采用动态跨度图传递上下文信息,进一步丰富跨度信息 |
[ | BERT+动态跨度图 | 采用BERT编码器,提升抽取跨度特征的准确性 |
[ | BERT+前馈神经网络 | 在BERT编码器上进行轻量级推理,并采用负采样降低训练复杂度 |
[ | BERT+注意力机制 | 用注意力机制实现跨度的表示,融入了局部和整体的语义信息实现关系抽取 |
[ | 表格填充+循环神经网络 | 将实体关系信息的表格转换成信息,用循环神经网络抽取实体关系信息 |
[ | 表格填充+双向LSTM | 表格填充过程中设计标注打分函数,获得全局最优的序列标注 |
[ | GRU+LSTM | 两个子任务都采用GRU,用LSTM学习参数层动态交互信息 |
[ | 双向LSTM+依赖树 | 采用强化学习方法,增强两个子任务交互性 |
[ | 双向LSTM+卷积神经网络 | 设计最小化风险的全局损失函数,增强两个子任务交互性 |
[ | 双向LSTM+GCN | 用序列标注识别实体后,将实体类型和关系类型构造成二分图进行联合推理 |
Table 3 Summary of mapping entity pairs to relationship models
文献 | 模型架构 | 描述 |
---|---|---|
[ | 双向LSTM+依赖树 | 两个子任务都采用双向LSTM网络和前馈神经网络实现 |
[ | 双向LSTM+卷积神经网络 | 卷积神经网络抽取关系类型时融入了实体间的局部句子信息 |
[ | 双向LSTM | 两个子任务均采用LSTM网络实现 |
[ | 双向LSTM+CRF | 采用CRF获得存在候选关系的实体,减少了冗余实体的影响 |
[ | 双向LSTM+自注意力机制 | 将每个关系类型当作独立的子空间,用自注意力机制获取更细粒度的语义关联 |
[ | 双向LSTM+双向GCN | 第一阶段预测出所有实体对,第二阶段构造带权重的GCN预测关系 |
[ | 双向LSTM+注意力机制 | 用注意力机制获取所有可能的跨度,跨度信息通过前馈神经网络实现关系抽取 |
[ | 双向LSTM+注意力机制 | 跨度类型信息和关系信息采用集束搜索的方式进行评估 |
[ | 双向LSTM+动态跨度图 | 采用动态跨度图传递上下文信息,进一步丰富跨度信息 |
[ | BERT+动态跨度图 | 采用BERT编码器,提升抽取跨度特征的准确性 |
[ | BERT+前馈神经网络 | 在BERT编码器上进行轻量级推理,并采用负采样降低训练复杂度 |
[ | BERT+注意力机制 | 用注意力机制实现跨度的表示,融入了局部和整体的语义信息实现关系抽取 |
[ | 表格填充+循环神经网络 | 将实体关系信息的表格转换成信息,用循环神经网络抽取实体关系信息 |
[ | 表格填充+双向LSTM | 表格填充过程中设计标注打分函数,获得全局最优的序列标注 |
[ | GRU+LSTM | 两个子任务都采用GRU,用LSTM学习参数层动态交互信息 |
[ | 双向LSTM+依赖树 | 采用强化学习方法,增强两个子任务交互性 |
[ | 双向LSTM+卷积神经网络 | 设计最小化风险的全局损失函数,增强两个子任务交互性 |
[ | 双向LSTM+GCN | 用序列标注识别实体后,将实体类型和关系类型构造成二分图进行联合推理 |
类型 | 优点 | 缺点 | 方法 | 文献 | 描述 |
---|---|---|---|---|---|
实体对映射到关系 | 存在大量成熟有效的实体命名识别和关系抽取模型,通过共享参数容易实现联合抽取 | 存在的冗余实体对提高了错误率;难以高效解决关系重叠的问题 | 循环神经网络为主体 | [41,45-47,55-58] | 命名实体识别和关系抽取都采用循环神经网络设计 |
混合模型 | [44,48,60-61] | 命名实体识别一般采用循环神经网络,关系抽取采用卷积神经网络、GCN等 | |||
基于跨度 | [ | 直接对实体跨度建模,能够有效解决实体嵌套的问题 | |||
头实体映射到关系、尾实体 | 加强实体类型信息和关系类型信息间的交互;有效解决关系重叠的问题 | 识别候选头实体和头实体映射到关系、尾实体两个过程的方法尚不成熟,设计相对复杂 | 循环神经网络为主体 | [ | 用循环神经网络融入上下文信息,识别出实体后用注意力方法识别关系和另一个实体 |
Transformer架构 | [ | 用Transformer提取更深层次的特征信息,采用指针网络抽取关系三元组 | |||
多轮问答方法 | [ | 问题中融入实体类型等先验信息,用机器阅读理解的方法抽取关系三元组 | |||
关系映射到头实体、尾实体 | 减少了冗余信息的抽取;从设计上容易解决关系重叠的问题 | 识别候选关系类型的难度大,设计相对复杂 | 循环神经网络为主体 | [ | 使用循环神经网络编码后,首先解码得到关系类型,再根据关系类型抽取对应实体信息 |
设计两个编码器 | [ | 两个编码器分别编码实体信息和关系类型信息,通过前馈神经网络进行预测 |
Table 4 Summary of shared parameter model
类型 | 优点 | 缺点 | 方法 | 文献 | 描述 |
---|---|---|---|---|---|
实体对映射到关系 | 存在大量成熟有效的实体命名识别和关系抽取模型,通过共享参数容易实现联合抽取 | 存在的冗余实体对提高了错误率;难以高效解决关系重叠的问题 | 循环神经网络为主体 | [41,45-47,55-58] | 命名实体识别和关系抽取都采用循环神经网络设计 |
混合模型 | [44,48,60-61] | 命名实体识别一般采用循环神经网络,关系抽取采用卷积神经网络、GCN等 | |||
基于跨度 | [ | 直接对实体跨度建模,能够有效解决实体嵌套的问题 | |||
头实体映射到关系、尾实体 | 加强实体类型信息和关系类型信息间的交互;有效解决关系重叠的问题 | 识别候选头实体和头实体映射到关系、尾实体两个过程的方法尚不成熟,设计相对复杂 | 循环神经网络为主体 | [ | 用循环神经网络融入上下文信息,识别出实体后用注意力方法识别关系和另一个实体 |
Transformer架构 | [ | 用Transformer提取更深层次的特征信息,采用指针网络抽取关系三元组 | |||
多轮问答方法 | [ | 问题中融入实体类型等先验信息,用机器阅读理解的方法抽取关系三元组 | |||
关系映射到头实体、尾实体 | 减少了冗余信息的抽取;从设计上容易解决关系重叠的问题 | 识别候选关系类型的难度大,设计相对复杂 | 循环神经网络为主体 | [ | 使用循环神经网络编码后,首先解码得到关系类型,再根据关系类型抽取对应实体信息 |
设计两个编码器 | [ | 两个编码器分别编码实体信息和关系类型信息,通过前馈神经网络进行预测 |
实体关系 | 文本 | 实体关系 |
---|---|---|
Normal | 水浒传的作者是施耐庵 | 作者水浒传 |
EPO | 北京,有着灿烂的文化、悠久的历史和丰富的古迹,是中国的首都 | 首都 中国 |
SEO | 刘备的二弟,关羽,温酒斩华雄,一战成名。 | |
Table 5 Example of relationship type classification
实体关系 | 文本 | 实体关系 |
---|---|---|
Normal | 水浒传的作者是施耐庵 | 作者水浒传 |
EPO | 北京,有着灿烂的文化、悠久的历史和丰富的古迹,是中国的首都 | 首都 中国 |
SEO | 刘备的二弟,关羽,温酒斩华雄,一战成名。 | |
类型 | 优点 | 缺点 | 方法 | 文献 | 描述 |
---|---|---|---|---|---|
共享参数 | 不同子任务在构建模型时能抽取丰富的特征信息 | 不同子任务之间信息交互不够充分 | 实体对映射到关系 | [41,44-61] | 先进行命名实体识别,再根据其结果实现关系抽取 |
头实体映射到关系、尾实体 | [ | 先识别头实体,根据头实体抽取相应关系和尾实体 | |||
关系映射到头实体、尾实体 | [ | 先抽取关系,依据关系类型建模到实体对的映射 | |||
联合解码 | 设计统一的解码器,实体关系信息得以充分交互 | 设计复杂的解码架构使得局部特征抽取不充分 | 序列标注 | [ | 设计复杂的标注方案融入实体、关系信息后解码序列 |
Sequence-to-Sequence | [78,80-84] | 解码器根据编码得到的语义向量依次产生关系三元组 |
Table 6 Joint extraction model based on neural network
类型 | 优点 | 缺点 | 方法 | 文献 | 描述 |
---|---|---|---|---|---|
共享参数 | 不同子任务在构建模型时能抽取丰富的特征信息 | 不同子任务之间信息交互不够充分 | 实体对映射到关系 | [41,44-61] | 先进行命名实体识别,再根据其结果实现关系抽取 |
头实体映射到关系、尾实体 | [ | 先识别头实体,根据头实体抽取相应关系和尾实体 | |||
关系映射到头实体、尾实体 | [ | 先抽取关系,依据关系类型建模到实体对的映射 | |||
联合解码 | 设计统一的解码器,实体关系信息得以充分交互 | 设计复杂的解码架构使得局部特征抽取不充分 | 序列标注 | [ | 设计复杂的标注方案融入实体、关系信息后解码序列 |
Sequence-to-Sequence | [78,80-84] | 解码器根据编码得到的语义向量依次产生关系三元组 |
实体类型 | 关系类型 |
---|---|
Person | PHYS |
Organization | PER-SOC |
Geographical Entities | PER/ORG-AFF |
Location | ART |
Facility | EMP-ORG |
Weapon | GPE-AFF |
Vehicle | DISC |
Table 7 ACE2004 dataset
实体类型 | 关系类型 |
---|---|
Person | PHYS |
Organization | PER-SOC |
Geographical Entities | PER/ORG-AFF |
Location | ART |
Facility | EMP-ORG |
Weapon | GPE-AFF |
Vehicle | DISC |
实体类型及数量 | 关系类型及数量 |
---|---|
406 Located In | |
1 685 Person | 394 Work For |
1 968 Location | 451 OrgBased In |
978 Organization | 521 Live In |
705 Other | 268 Kill |
17 007 None |
Table 8 CoNLL04 dataset
实体类型及数量 | 关系类型及数量 |
---|---|
406 Located In | |
1 685 Person | 394 Work For |
1 968 Location | 451 OrgBased In |
978 Organization | 521 Live In |
705 Other | 268 Kill |
17 007 None |
数据集 | 实体种类 | 关系种类 | 规模 | 数据来源 | 下载网址 |
---|---|---|---|---|---|
ACE2004 | 7 | 7 | 6 800 | 语言数据联盟 | |
ACE2005 | 7 | 6 | 10 500 | 语言数据联盟 | |
SemEval-2010 Task 8 | — | 9 | 10 700 | WordNet等 | |
CoNLL04 | 4 | 6 | 1 400 | 国际文本信息检索会议 | |
ADE | 2 | 1 | 6 800 | 美国国家医学图书馆 | |
NTY | 3 | 24 | 66 200 | 纽约时报 | |
WebNLG | — | 246 | 6 200 | DBpedia | |
Table 9 Summary of entity and relation extraction datasets
数据集 | 实体种类 | 关系种类 | 规模 | 数据来源 | 下载网址 |
---|---|---|---|---|---|
ACE2004 | 7 | 7 | 6 800 | 语言数据联盟 | |
ACE2005 | 7 | 6 | 10 500 | 语言数据联盟 | |
SemEval-2010 Task 8 | — | 9 | 10 700 | WordNet等 | |
CoNLL04 | 4 | 6 | 1 400 | 国际文本信息检索会议 | |
ADE | 2 | 1 | 6 800 | 美国国家医学图书馆 | |
NTY | 3 | 24 | 66 200 | 纽约时报 | |
WebNLG | — | 246 | 6 200 | DBpedia | |
真实情况 | 预测结果 | |
---|---|---|
正类 | 反类 | |
正类 | TP | FN |
反类 | FP | TN |
Table 10 Confusion matrix
真实情况 | 预测结果 | |
---|---|---|
正类 | 反类 | |
正类 | TP | FN |
反类 | FP | TN |
数据集 | 模型 | 命名实体识别 | 关系抽取 |
---|---|---|---|
ACE2004 | Li[ | 79.7 | 45.3 |
Katiyar[ | 79.6 | 45.7 | |
Bekoulis[ | 81.2 | 47.1 | |
Bekoulis[ | 81.6 | 47.5 | |
SPTree[ | 81.8 | 48.4 | |
Li[ | 83.6 | 49.4 | |
DyGIE[ | 87.4 | 59.7* | |
Wang[ | 88.6 | 59.6 | |
ACE2005 | Li[ | 80.8 | 49.5 |
SPTree[ | 83.4 | 55.6 | |
Katiyar[ | 82.6 | 53.6 | |
Zhang[ | 83.5 | 57.5 | |
Sun[ | 83.6 | 59.6 | |
Sun[ | 84.2 | 59.1 | |
Li[ | 84.8 | 60.2 | |
Zhao[ | 85.7 | 62.3 | |
Dixit[ | 86.0 | 62.8* | |
DyGIE[ | 88.4 | 63.2* | |
Wadden[ | 88.6 | 63.4* | |
Wang[ | 89.5 | 64.3 | |
SPAN[ | 89.6 | 65.2 | |
CoNLL04 | Miwa[ | 80.7 | 61.0 |
Bekoulis[ | 83.6 | 62.0 | |
Bekoulis[ | 83.9 | 62.0 | |
Zhang[ | 85.6 | 67.8 | |
Li[ | 87.8 | 68.9 | |
SpERT[ | 88.9 | 71.5 | |
Zhao[ | 88.9 | 71.9 | |
Wang[ | 90.1 | 73.6 | |
SPAN[ | 90.2 | 74.3 | |
ADE | Li[ | 84.6 | 71.4 |
Bekoulis[ | 86.4 | 74.6 | |
Bekoulis[ | 86.7 | 75.5 | |
SpERT[ | 89.3 | 79.2 | |
Wang[ | 89.7 | 80.1 | |
SPAN[ | 90.6 | 80.7 |
Table 11 Evaluation results on supervised datasets %
数据集 | 模型 | 命名实体识别 | 关系抽取 |
---|---|---|---|
ACE2004 | Li[ | 79.7 | 45.3 |
Katiyar[ | 79.6 | 45.7 | |
Bekoulis[ | 81.2 | 47.1 | |
Bekoulis[ | 81.6 | 47.5 | |
SPTree[ | 81.8 | 48.4 | |
Li[ | 83.6 | 49.4 | |
DyGIE[ | 87.4 | 59.7* | |
Wang[ | 88.6 | 59.6 | |
ACE2005 | Li[ | 80.8 | 49.5 |
SPTree[ | 83.4 | 55.6 | |
Katiyar[ | 82.6 | 53.6 | |
Zhang[ | 83.5 | 57.5 | |
Sun[ | 83.6 | 59.6 | |
Sun[ | 84.2 | 59.1 | |
Li[ | 84.8 | 60.2 | |
Zhao[ | 85.7 | 62.3 | |
Dixit[ | 86.0 | 62.8* | |
DyGIE[ | 88.4 | 63.2* | |
Wadden[ | 88.6 | 63.4* | |
Wang[ | 89.5 | 64.3 | |
SPAN[ | 89.6 | 65.2 | |
CoNLL04 | Miwa[ | 80.7 | 61.0 |
Bekoulis[ | 83.6 | 62.0 | |
Bekoulis[ | 83.9 | 62.0 | |
Zhang[ | 85.6 | 67.8 | |
Li[ | 87.8 | 68.9 | |
SpERT[ | 88.9 | 71.5 | |
Zhao[ | 88.9 | 71.9 | |
Wang[ | 90.1 | 73.6 | |
SPAN[ | 90.2 | 74.3 | |
ADE | Li[ | 84.6 | 71.4 |
Bekoulis[ | 86.4 | 74.6 | |
Bekoulis[ | 86.7 | 75.5 | |
SpERT[ | 89.3 | 79.2 | |
Wang[ | 89.7 | 80.1 | |
SPAN[ | 90.6 | 80.7 |
[1] | GOLSHAN P N, DASHTI H R, AZIZI S, et al. A study of recent contributions on information extraction[J]. arXiv: 1803. 05667, 2018. |
[2] |
FREITAG D. Machine learning for information extraction in informal domains[J]. Machine Learning, 2000, 39(2):169-202.
DOI URL |
[3] | 刘春梅, 郭岩, 俞晓明, 等. 针对开源论坛网页的信息抽取研究[J]. 计算机科学与探索, 2017, 11(1):114-123. |
LIU C M, GUO Y, YU X M, et al. Information extraction research aimed at open sourceweb pages[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(1):114-123. | |
[4] | 薛丽娟, 席梦隆, 王梦婕, 等. 基于规则推理引擎的实体关系抽取研究[J]. 计算机科学与探索, 2016, 10(9):1310-1319. |
XUAN L J, XI M L, WANG M J, et al. Entity relation ex-traction based on rule inference engine[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(9):1310-1319. | |
[5] | 甘丽新, 万常选, 刘德喜, 等. 基于句法语义特征的中文实体关系抽取[J]. 计算机研究与发展, 2016, 53(2):284-302. |
GAN L X, WAN C Y, LIU D C, et al. Chinese named entity relation extraction based on syntactic and semantic features[J]. Journal of Computer Research and Development, 2016, 53(2):284-302. | |
[6] | BENDER O, OCH F J, NEY H. Maximum entropy models for named entity recognition[C]// Proceedings of the 17th Conference on Natural Language Learning at HLT-NAACL, Edmonton, May 31-Jun 1, 2003. Stroudsburg: ACL, 2003: 148-151. |
[7] |
BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algo-rithm that learns what’s in a name[J]. Machine Learning, 1999, 34(1):211-231.
DOI URL |
[8] | WANG B, LU W, WANG W, et al. A neural transition-based model for nested mention recognition[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-guage Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 1011-1017. |
[9] | ZELENKO D, AONE C, RICHARDELLA A. Kernel methods for relation extraction[J]. Journal of Machine Learning Research, 2003(3):1083-1106. |
[10] | ZHOU G D, SU J, ZHANG J, et al. Exploring various knowledge in relation extraction[C]// Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Michigan, Jun 25-30, 2005. Stroudsburg: ACL, 2005: 427-434. |
[11] | CHAN Y S, ROTH D. Exploiting syntactico-semantic struc-tures for relation extraction[C]// Proceedings of the 49th Ann-ual Meeting of the Association for Computational Lingui-stics, Portland, Jun 19-24, 2011. Stroudsburg: ACL, 2011: 551-560. |
[12] | MILLKER S, FOX H, RAMSHAW L, et al. A novel use of statistical parsing to extract information from text[C]// Pro-ceedings of the 6th Applied Natural Language Processing Conference, Seattle, Apr 29-May 4, 2000. Stroudsburg: ACL, 2000: 226-233. |
[13] | 陈宇, 郑德权, 赵铁军. 基于Deep Belief Nets的中文名实体关系抽取[J]. 软件学报, 2012, 23(10):2572-2585. |
CHEN Y, ZHENG D H, ZHAO T J. Chinese relation extrac-tion based on Deep Belief Nets[J]. Journal of Software, 2012, 23(10):2572-2585. | |
[14] | 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6):1793-1818. |
E H H, ZHANG W J, XIAO S Q, et al. oint entity rela-tionship extraction based on deep learning[J]. Journal of Software, 2019, 30(6):1793-1818. | |
[15] | 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7):1424-1448. |
LI D M, ZHANG Y, LI D Y, et al. A survey of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7):1424-1448. | |
[16] | PAWAR S, PALSHIKAR G K, BHATTACHARYYA P. Etrac-tion: a survey[J]. arXiv: 1712. 05191, 2017. |
[17] | KONSTANTIONVA N. Review of relation extraction me-thods: what is new out there?[C]// Proceedings of the 3rd International Conference on Analysis of Images, Social Net-works and Texts, Yekaterinburg, Apr 10-12, 2014. Cham: Springer, 2014: 15-28. |
[18] | KUMAR S. A survey of deep learning methods for relation extraction[J]. arXiv: 1705. 03645, 2017. |
[19] | ZHANG Q Q, CHEN M D, LIU L Z. A review on entity re-lation extraction[C]// Proceedings of the 2017 2nd Interna-tional Conference on Mechanical, Control and Computer Engineering, Harbin, Dec 8-10, 2017. Piscataway: IEEE, 2017: 178-183. |
[20] | PAWAR S, BHATTACHARYYA P, PALSHIKAR G K. Tech-niques for jointly extracting entities and relations: a survey[J]. arXiv: 2103. 06118, 2021. |
[21] |
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211.
DOI URL |
[22] |
HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8):1735-1780.
DOI URL |
[23] | CHUNG J Y, GULCEHRE C, CHO K, et al. Empirical eva-luation of gated recurrent neural networks on sequence mode-ling[J]. arXiv: 1412. 3555, 2014. |
[24] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv: 1609. 02907, 2006. |
[25] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lin-guistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. |
[26] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-cessing Systems 2017, Long Beach, Dec 4-9, 2017: 5998-6008. |
[27] | FLORIAN R, ITTYCHERIAH A, JING H, et al. Named entity recognition through classifier combination[C]// Pro-ceedings of the 17th Conference on Natural Language Learning at HLT-NAACL, Edmonton, May 31-Jun 1, 2003. Stroudsburg: ACL, 2003: 168-171. |
[28] | MIWA M, RUNE S, YUSUKE M, et al. A rich feature vector for protein-protein interaction extraction from multiple cor-pora[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, Aug 6-7, 2009. Stroudsburg: ACL, 2009: 121-130. |
[29] |
DANTZIG G B. Reminiscences about the origins of linear pro-gramming[J]. Operations Research Letters, 1982, 1(2):43-48.
DOI URL |
[30] | ROTH D, YIN W T. A linear programming formulation for global inference in natural language tasks[C]// Proceedings of the 8th Conference on Computational Natural Language Lear-ning, Boston, May 6-7, 2004. Stroudsburg: ACL, 2004: 1-8. |
[31] | YANG B, CARDIE C. Joint inference for fine-grained opinion extraction[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Aug 4-9, 2013. Stroudsburg: ACL, 2013: 1640-1649. |
[32] | LAFFERT J, MCCALLUM A, PEREIRA F C. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th Interna-tional Conference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Francisco: Morgan Kaufmann, 2001: 282-289. |
[33] | KATE R, NOONEY R. A joint entity and relation extraction using card-pyramid parsing[C]// Proceedings of the 14th Con-ference on Computational Natural Language Learning, Uppsala, Jul 15-16, 2010. Stroudsburg: ACL, 2010: 203-212. |
[34] | CORTES C, VAPNIK V. Support-vector networks[J]. Ma-chine Learning, 1995, 20(3):273-297. |
[35] |
GHAHRAMANI Z. Probabilistic machine learning and ar-tificial intelligence[J]. Nature, 2015, 521(7553):452-459.
DOI URL |
[36] | YU X F, LAM W. Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach[C]// Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, Aug 23-27, 2010. Strouds-burg: ACL, 2010: 1399-1407. |
[37] | SINGH S, RIEDEL S, MARTIN B, et al. Joint inference of entities, relations, and coreference[C]// Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, San Francisco, Oct 27-28, 2013. New York: ACM, 2013: 1-6. |
[38] | LI Q, JI H. Incremental joint extraction of entity mentions and relations[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Balti-more, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 402-412. |
[39] | MIWA M, SASAKI Y. Modeling joint entity and relation extraction with table representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-guage Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1858-1869. |
[40] |
HINTON G E, SALAKHUTDINOV S S. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-407.
DOI URL |
[41] | MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Com-putational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1105-1116. |
[42] | XU K, FENG Y, HUANG S, et al. Semantic relation classifi-cation via convolutional neural networks with simple nega-tive sampling[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lis-bon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 536-540. |
[43] |
WERBOS P J. Backpropagation through time: what it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10):1550-1560.
DOI URL |
[44] | ZHENG S C, HAO Y X, LU D Y, et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017, 267:59-66. |
[45] | LI F, ZHANGE M, FU G, et al. A neural joint model for entity and relation extraction from biomedical text[J]. BMC Bioinformatics, 2017, 18(1):1-11. |
[46] | TAN Z, ZHAO X, WANG W, et al. Jointly extracting multi-ple triplets with multilayer translation constraints[C]// Pro-ceedings of the 33rd AAAI Conference on Artificial Intelli-gence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 7080-7087. |
[47] | LIU J, CHEN S W, WANG B Q, et al. Attention as relation: learning supervised multi-head self-attention for relation ex-traction[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jan 7-15, 2021. San Francisco: Morgan Kaufmann, 2021: 3787-3793. |
[48] | FU T J, LI P H, MA W Y. GraphRel: modeling text as rela-tional graphs for joint entity and relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1409-1418. |
[49] | DIXIT K, AL-ONAIZAN Y. Span-level model for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 5308-5314. |
[50] | LUAN Y, HE L Y, OSTENDORF M, et al. Multi-task iden-tification of entities, relations,coreference for scien-tific knowledge graph construction[J]. arXiv: 1808. 09602, 2018. |
[51] | LUAN Y, WADDEN D, HE L H, et al. A general frame-work for information extraction using dynamic span graphs[C]// Proceedings of the 2019 Conference of the North Ame-rican Chapter of the Association for Computational Lin-guistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 3036-3046. |
[52] | WADDEN D, WENNBERG U, LUAN L, et al. Entity, rela-tion, and event extraction with contextualized span repre-sentations[C]// Proceedings of the 2019 Conference on Em-pirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5784-5789. |
[53] | EBERTS M, ULGES A. Span-based joint entity and relation extraction with transformer pre-training[J]. arXiv: 1909. 07755, 2019. |
[54] | JI B, YU J, LI S S, et al. Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations[C]// Proceedings of the 28th Inter-national Conference on Computational Linguistics, Barce-lona, Dec 8-13, 2020. Praha: ICCL, 2020: 88-99. |
[55] | GUPTA P, SCHUTZE H, ANDRASSY B. Table filling multi-task recurrent neural network for joint entity and relation extraction[C]// Proceedings of the 26th International Confe-rence on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 2537-2547. |
[56] | ZHANG M, ZHANG Y, FU G. End-to-end neural relation extraction with global optimization[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 1730-1740. |
[57] | SUN K, ZHANG R, MENSAH S, et al. Recurrent interac-tion network for jointly extracting entities and classifying rela-tions[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 3722-3732. |
[58] | FENG Y, ZHANG H J, HAO W N, et al. Joint extraction of entities and relations using reinforcement learning and deep learning[J]. Computational Intelligence and Neuroscience, 2017, 7643065:1-11. |
[59] |
KAELBING L P, LTTMAN M L, MOORE A W. Reinforce-ment learning: a survey[J]. Journal of Artificial Intelligence Research, 1996, 4:237-285.
DOI URL |
[60] | SUN C Z, WU Y, LAN M, et al. Extracting entities and relations with joint minimum risk training[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 2256-2265. |
[61] | SUN C Z, GONG Y Y, WU Y B, et al. Joint type inference on entities and relations via graph convolutional networks[C]// Proceedings of the 57th Annual Meeting of the Asso-ciation for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1361-1370. |
[62] | KATIYAR A, CARDIE C. Going out on a limb: joint extrac-tion of entity mentions and relations without dependency trees[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928. |
[63] |
BEKOULIS G, DELEU J, DEMEESTER T, et al. Joint entity recognition and relation extraction as a multi-head selection pro-blem[J]. Expert Systems with Applications, 2018, 114:34-45.
DOI URL |
[64] | BEKOULIS G, DELEU J, DEMEESTER T, et al. Adversarial training for multi-context joint entity and relation extraction[C]// Proceedings of the 2018 Conference on Empirical Me-thods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2830-2836. |
[65] | YU B, ZHANG Z Y, SHU X B, et al. Joint extraction of entities and relations based on a novel decomposition stra-tegy[J]. arXiv: 1909. 04273, 2019. |
[66] | WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]// Pro-ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 1476-1488. |
[67] | WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[C]// Proceedings of the 28th International Confe-rence on Computational Linguistics, Barcelona, Dec 8-13, 2020. Praha: ICCL, 2020: 1572-1582. |
[68] | LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Lin-guistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1340-1350. |
[69] | ZHAO T, YAN Z, CAO Y, et al. Asking effective and diverse questions: a machine reading comprehension based frame-work for joint entity-relation extraction[C]// Proceedings of the 29th International Joint Conference on Artificial In-telligence, Yokohama, Jan 7-15, 2021. San Francisco: Mor-gan Kaufmann, 2021: 3948-3954. |
[70] | TAKANOBU R, ZHANG T, LIU J, et al. A hierarchical frame-work for relation extraction with reinforcement learning[C]// Proceedings of the 33rd AAAI Conference on Arti-ficial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 7072-7079. |
[71] | ZHOU P, ZHENG S, XU J, et al. Joint extraction of multi-ple relations and entities by using a hybrid neural network[C]// Proceedings of the 16th China National Conference on Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, Nan-jing, Oct 13-15, 2017. Cham: Springer, 2017: 135-146. |
[72] | YUAN Y, ZHOU X, PAN S, et al. A relation-specific at-tention network for joint entity and relation extraction[C]// Proceedings of the 29th International Joint Conferences on Artificial Intelligence, Yokohama, Jan 7-15, 2021. San Fran-cisco: Morgan Kaufmann, 2020: 4054-4060. |
[73] | WANG J, WEI L. Two are better than one: joint entity and relation extraction with table-sequence encoders[C]// Pro-ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1706-1721. |
[74] | ZHENG S, WANG F, BAO H, et al. Joint extraction of enti-ties and relations based on a novel tagging scheme[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1227-1236. |
[75] | DAI D, XIAO X, LYU Y, et al. Joint extraction of entities and overlapping relations using position-attentive sequence labeling[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 6300-6308. |
[76] | CHO K, MERRIENBOER B V, GULCEHRE C, et al. Lear-ning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-cessing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1724-1734. |
[77] | SUTAKEVER I, VINYALS O, LE Q V. Sequence to se-quence learning with neural networks[C]// Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014: 3104-3112. |
[78] | ZENG X R, ZENG D, HE S, et al. Extracting relational facts by an end-to-end neural model with copy mechanism[C]// Proceedings of the 56th Annual Meeting of the Asso-ciation for Computational Linguistics, Melbourne, Jul 15-20. Stroudsburg: ACL, 2018: 506-514. |
[79] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neu-ral networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
DOI URL |
[80] | ZENG X R, HE S Z, ZENG D J, et al. Learning the ex-traction order of multiple relational facts in a sentence with reinforcement learning[C]// Proceedings of the 2019 Con-ference on Empirical Methods in Natural Language Proces-sing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 367-377. |
[81] | ZENG D, ZHANG H, LIU Q. CopyMTL: copy mechanism for joint extraction of entities and relations with multi-task learning[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 9507-9514. |
[82] |
PANG Y, LIU J, LIU L, et al. A deep neural network model for joint entity and relation extraction[J]. IEEE Access, 2019, 7:179143-179150.
DOI URL |
[83] | NAYAK T, NG H. Effective modeling of encoder-decoder architecture for joint entity and relation extraction[C]// Pro-ceedings of the 34th AAAI Conference on Artificial In-telligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8528-8535. |
[84] | SUI D, CHEN Y, LIU K, et al. Joint entity and relation extraction with set prediction networks[J]. arXiv: 2011. 01675, 2020. |
[85] |
GATT A, KRAHMER E. Survey of the state of the art in natural language generation: core tasks, applications and evaluation[J]. Journal of Artificial Intelligence Research, 2018, 61:65-170.
DOI URL |
[86] | REN X, WU Z, HE W, et al. CoType: joint extraction of typed entities and relations with knowledge bases[C]// Pro-ceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1015-1024. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | HUANG Hao, GE Hongwei. Deep Residual Expression Recognition Network to Enhance Inter-class Discrimination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849. |
[3] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[4] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[5] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[6] | OU Yangliu, HE Xi, QU Shaojun. Fully Convolutional Neural Network with Attention Module for Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. |
[7] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[8] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
[9] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[10] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[11] | ZHUO Tiantian, SANG Qingbing. Application of Attention Mechanism and Composite Convolution in Handwriting Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897. |
[12] | MA Jinlin, ZHANG Yu, MA Ziping, MAO Kaiji. Research Progress of Lightweight Neural Network Convolution Design [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528. |
[13] | PEI Lishen, LIU Shaobo, ZHAO Xuezhuan. Review of Human Behavior Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 305-322. |
[14] | ZHAO Shan, LUO Rui, CAI Zhiping. Survey of Chinese Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304. |
[15] | LI Zhaoyang, LI Lin, TAO Xiaohui. Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Fore-casting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 384-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/