Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (9): 2276-2292.DOI: 10.3778/j.issn.1673-9418.2306058
• Frontiers·Surveys • Previous Articles Next Articles
LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng
Online:
2024-09-01
Published:
2024-09-01
李子奇,苏宇轩,孙俊,张永宏,夏庆锋,尹贺峰
LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292.
李子奇, 苏宇轩, 孙俊, 张永宏, 夏庆锋, 尹贺峰. 基于深度学习的多聚焦图像融合方法前沿进展[J]. 计算机科学与探索, 2024, 18(9): 2276-2292.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2306058
[1] LIU Y, LIU S, WANG Z. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139-155. [2] TANG H, XIAO B, LI W, et al. Pixel convolutional neural network for multi-focus image fusion[J]. Information Sciences, 2018, 433: 125-141. [3] JIANG Z G, HAN D B, CHEN J, et al. A wavelet-based algorithm for multi-focus micro-image fusion[C]//Proceedings of the 3rd International Conference on Image and Graphics, Hong Kong, China, Dec 18-20, 2004.?Washington: IEEE Computer Society, 2004: 176-179. [4] WANG Z, MA Y. Medical image fusion using m-PCNN[J]. Information Fusion, 2008, 9(2): 176-185. [5] SUJATHA K, PUNITHAVATHANI D S. Optimized ensemble decision-based multi-focus image fusion using binary genetic Grey-Wolf optimizer in camera sensor networks[J]. Multimedia Tools and Applications, 2018, 77(2): 1735-1759. [6] CHEN Z, WANG D, GONG S, et al. Application of multi-focus image fusion in visual power patrol inspection[C]//Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference,?Chongqing, Mar 25-26, 2017. Piscataway: IEEE, 2017: 1688-1692. [7] SONG Y, LI M T, LI Q L, et al. A new wavelet based multi-focus image fusion scheme and its application on optical microscopy[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, Dec 17-20, 2006. Piscataway: IEEE, 2006: 401-405. [8] ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: a survey and perspective[J]. Information Fusion, 2021, 76: 323-336. [9] LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. [10] BHAT S, KOUNDAL D. Multi-focus image fusion techniques: a survey[J]. Artificial Intelligence Review, 2021, 54(8): 5735-5787. [11] LIU Y, WANG L, CHENG J, et al. Multi-focus image fusion: a survey of the state of the art[J]. Information Fusion, 2020, 64: 71-91. [12] ZHANG Q, SHI T, WANG F, et al. Robust sparse representation based multi-focus image fusion with dictionary construction and local spatial consistency[J]. Pattern Recognition, 2018, 83: 299-313. [13] ZHANG Q, LIU Y, BLUM R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion, 2018, 40: 57-75. [14] AMIN-NAJI M, AGHAGOLZADEH A. Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks[J]. Journal of AI and Data Mining, 2018, 6(2): 233-250. [15] KOU L, ZHANG L, ZHANG K, et al. A multi-focus image fusion method via region mosaicking on Laplacian pyramids[J]. PLoS One, 2018, 13(5): e0191085. [16] BAVIRISETTI D P, XIAO G, ZHAO J, et al. Multi-scale guided image and video fusion: a fast and efficient approach[J]. Circuits, Systems, and Signal Processing, 2019, 38(12): 5576-5605. [17] PAUL S, SEVCENCO I S, AGATHOKLIS P. Multi-exposure and multi-focus image fusion in gradient domain[J]. Journal of Circuits, Systems and Computers, 2016, 25(10): 1650123. [18] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. [19] LI J, GUO X, LU G, et al. DRPL: deep regression pair learning for multi-focus image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4816-4831. [20] LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. [21] AMIN-NAJI M, AGHAGOLZADEH A, EZOJI M. Ensemble of CNN for multi-focus image fusion[J]. Information Fusion, 2019, 51: 201-214. [22] YANG Y, NIE Z, HUANG S, et al. Multilevel features convolutional neural network for multifocus image fusion[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 262-273. [23] TONG H S, WU X J, LI H. Improved dual channel pulse coupled neural network and its application to multi-focus image fusion[EB/OL]. [2023-03-25]. https://arxiv.org/abs/2002. 01102. [24] GUO X, NIE R, CAO J, et al. Fully convolutional network-based multifocus image fusion[J]. Neural Computation, 2018, 30(7): 1775-1800. [25] GUO X, NIE R, CAO J, et al. FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network[J]. IEEE Transactions on Multimedia, 2019, 21(8): 1982-1996. [26] GUO X, MENG L, MEI L, et al. Multi-focus image fusion with siamese self-attention network[J]. IET Image Processing, 2020, 14(7): 1339-1346. [27] WANG Y, XU S, LIU J, et al. MFIF-GAN: a new generative adversarial network for multi-focus image fusion[J]. Signal Processing: Image Communication, 2021, 96: 116295. [28] MA B, ZHU Y, YIN X, et al. SESF-Fuse: an unsupervised deep model for multi-focus image fusion[J]. Neural Computing and Applications, 2021, 33(11): 5793-5804. [29] XU H, FAN F, ZHANG H, et al. A deep model for multi-focus image fusion based on gradients and connected regions[J]. IEEE Access, 2020, 8: 26316-26327. [30] XU K, QIN Z, WANG G, et al. Multi-focus image fusion using fully convolutional two-stream network for visual sensors[J]. KSII Transactions on Internet and Information Systems, 2018, 12(5): 2253-2272. [31] ZHAO W, WANG D, LU H. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(4): 1102-1115. [32] LI H, NIE R, CAO J, et al. Multi-focus image fusion using U-shaped networks with a hybrid objective[J]. IEEE Sensors Journal, 2019, 19(21): 9755-9765. [33] ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. [34] HUANG J, LE Z, MA Y, et al. A generative adversarial network with adaptive constraints for multi-focus image fusion[J]. Neural Computing and Applications, 2020, 32: 15119-15129. [35] DUAN Z, ZHANG T, LUO X, et al. DCKN: multi-focus image fusion via dynamic convolutional kernel network[J]. Signal Processing, 2021, 189: 108282. [36] XIAO B, WU H, BI X. DTMNet: a discrete Tchebichef moments-based deep neural network for multi-focus image fusion[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021. [37] XU H, MA J, LE Z, et al. FusionDN: a unified densely connected network for image fusion[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 12484-12491. [38] ZHANG H, LE Z, SHAO Z, et al. MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion, 2021, 66: 40-53. [39] MA J, LE Z, TIAN X, et al. SMFuse: multi-focus image fusion via self-supervised mask-optimization[J]. IEEE Transactions on Computational Imaging, 2021, 7: 309-320. [40] NEJATI M, SAMAVI S, SHIRANI S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion, 2015, 25: 72-84. [41] XU S, WEI X, ZHANG C, et al. MFFW: a new dataset for multi-focus image fusion[EB/OL]. [2023-03-25]. https://arxiv.org/abs/2002.04780. [42] SAVI? S, BABI? Z. Multifocus image fusion based on the first level of empirical mode decomposition[C]//Proceedings of the 2012 19th International Conference on Systems, Signals and Image Processing, Vienna, Apr 11-13, 2012. Piscataway: IEEE, 2012: 604-607. [43] MA H, LIAO Q, ZHANG J, et al. An α-matte boundary defocus model-based cascaded network for multi-focus image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 8668-8679. [44] LIU Z, BLASCH E, XUE Z, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(1): 94-109. [45] QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315. [46] HOSSNY M, NAHAVANDI S, CREIGHTON D. Comments on ‘Information measure for performance of image fusion’[J]. Electronics Letters, 2008, 44(18): 1066-1067. [47] BULANON D M, BURKS T F, ALCHANATIS V. Image fusion of visible and thermal images for fruit detection[J]. Biosystems Engineering, 2009, 103(1): 12-22. [48] CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. [49] RAJALINGAM B, PRIYA R. Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis[J]. International Journal of Engineering Science Invention, 2018, 2: 52-60. [50] XYDEAS C S, PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309. [51] ESKICIOGLU A M, FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965. [52] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [53] LI S, HONG R, WU X. A novel similarity based quality metric for image fusion[C]//Proceedings of the 2008 International Conference on Audio, Language and Image Processing, Shanghai, Jul 7-9, 2008. Piscataway: IEEE, 2008: 167-172. [54] CHEN Y, BLUM R S. A new automated quality assessment algorithm for image fusion[J]. Image and Vision Computing, 2009, 27(10): 1421-1432. [55] HAN Y, CAI Y, CAO Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135. [56] DO C M, JAVIDI B. Multifocus holographic 3-D image fusion using independent component analysis[J]. Journal of Display Technology, 2007, 3(3): 326-332. [57] BENES R, DVORAK P, FAUNDEZ-ZANUY M, et al. Multi-focus thermal image fusion[J]. Pattern Recognition Letters, 2013, 34(5): 536-544. [58] COSTA M G F, PINTO K M B, FUJIMOTO L B M, et al. Multi-focus image fusion for bacilli images in conventional sputum smear microscopy for tuberculosis[J]. Biomedical Signal Processing and Control, 2019, 49: 289-297. [59] GABARDA S, CRISTóBAL G. On the use of a joint spatial-frequency representation for the fusion of multi-focus images[J]. Pattern Recognition Letters, 2005, 26(16): 2572-2578. [60] CAO T, DINH A, WAHID K A, et al. Multi-focus fusion technique on low-cost camera images for canola phenotyping[J]. Sensors, 2018, 18(6): 1887. [61] ZHANG X, LI X, LIU Z, et al. Multi-focus image fusion using image-partition-based focus detection[J]. Signal Processing, 2014, 102: 64-76. [62] ZHANG X. Deep learning-based multi-focus image fusion: a survey and a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4819-4838. |
[1] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[2] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[3] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[4] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[5] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[6] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[7] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[8] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[9] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[10] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[11] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[12] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[13] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[14] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[15] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/