Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (8): 2014-2033.DOI: 10.3778/j.issn.1673-9418.2311049
• Frontiers·Surveys • Previous Articles Next Articles
CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun
Online:
2024-08-01
Published:
2024-07-29
陈福仕,沈尧,周池春,丁锰,李居昊,赵东越,雷永升,潘亦伦
CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun. Review of Unsupervised Learning Gait Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2014-2033.
陈福仕, 沈尧, 周池春, 丁锰, 李居昊, 赵东越, 雷永升, 潘亦伦. 无监督学习步态识别综述[J]. 计算机科学与探索, 2024, 18(8): 2014-2033.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2311049
[1] LOURDE R M, KHOSLA D. Fingerprint identification in biometric security systems[J]. International Journal of Computer and Electrical Engineering, 2010, 2(5): 852-855. [2] 姚丽莎, 程家兴. 有限元指纹图像配准[J]. 计算机科学与探索, 2017, 11(4): 643-651. YAO L S, CHENG J X. Fingerprint registration based on finite element[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 643-651. [3] ADJABI I, OUAHABI A, BENZAOUI A, et al. Past, pre-sent, and future of face recognition: a review[J]. Electronics, 2020, 9(8): 1188. [4] 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903. WANG H Y, PAN H T, LIU G N. Face recognition method based on attention mechanism and curriculum learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. [5] 赵慧, 景丽萍, 于剑. 自适应监督下降方法的姿态鲁棒人脸对齐算法[J]. 计算机科学与探索, 2020, 14(4): 649-656. ZHAO H, JING L P, YU J. Pose-robust face alignment with adaptive supervised descent method[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 649-656. [6] TANDEL N H, PRAJAPATI H B, DABHI V K. Voice recog-nition and voice comparison using machine learning techniques: a survey[C]//Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems. Piscataway: IEEE, 2020: 459-465. [7] 李伟, 王鹏程, 钟骁, 等. 基于深度学习的跨设备声纹识别方法研究[J]. 单片机与嵌入式系统应用, 2022, 22(12): 16-19. LI W, WANG P C, ZHONG X, et al. Research on cross-device voiceprint recognition method based on deep learning[J]. Microcontrollers & Embedded Systems, 2022, 22(12): 16-19. [8] WILDES R P. Iris recognition: an emerging biometric technology[J]. Proceedings of the IEEE, 1997, 85(9): 1348-1363. [9] 雷松泽, 李永刚, 单奥奎, 等. 虹膜与眼周深度特征融合网络模型[J]. 工程科学与技术, 2024, 56(3): 240-248. LEI S Z, LI Y G, SHAN A K, et al. Deep feature fusion network model for iris and periocular biometrics[J]. Advanced Engineering Sciences, 2024, 56(3): 240-248. [10] 梅建华, 云利军, 朱小鹏. 基于长短期记忆网络的红外人体步态识别方法研究[J]. 激光与光电子学进展, 2022, 59(8): 0811005. MEI J H, YUN L J, ZHU X P. Infrared human gait recognition method based on long and short term memory network [J]. Laser & Optoelectronics Progress, 2022, 59(8): 0811005. [11] 吴文杰, 朱耀麟, 梁颖. 基于WiFi CSI的多特征融合的步态识别[J]. 传感器与微系统, 2023, 42(3): 144-147. WU W J, ZHU Y L, LIANG Y. Multi-feature fusion gait recognition based on WiFi CSI[J]. Transducer and Microsystem Technologies, 2023, 42(3): 144-147. [12] 李俊翔, 郝刚, 王伟, 等. 步态识别技术在公安实战警务工作中的应用研究[J]. 警察技术, 2023(2): 84-86. LI J X, HAO G, WANG W, et al. Research on the application of gait recognition technology in public security practical police work[J]. Police Technology, 2023(2): 84-86. [13] 陈春杰. 步态识别技术在公安实战中的应用与发展[J]. 中阿科技论坛(中英文), 2022(10): 120-124. CHEN C J. Research on the application of gait recognition technology in public security combat[J]. China-Arab States Science and Technology Forum, 2022(10): 120-124. [14] 张松, 李江龙, 刘静, 等. 步态识别在疫情防控流调排查中的应用[J]. 中国安防, 2022(11): 95-99. ZHANG S, LI J L, LIU J, et al. Application of gait recognition in outbreak prevention and control streaming screening[J]. China Security & Protection, 2022(11): 95-99. [15] BARI A S M H, GAVRILOVA M L. Artificial neural network based gait recognition using kinect sensor[J]. IEEE Access, 2019, 7: 162708-162722. [16] NIXON M S, CARTER J N, CUNADO D, et al. Automatic gait recognition[M]//JAIN A K, BOLLE R, PANKANTI S. Biometrics. Boston: Springer US, 1999: 231-249. [17] YANG J C, ZHOU J X, FAN D Y, et al. Design of intelligent recognition system based on gait recognition technology in smart transportation[J]. Multimedia Tools and Applications, 2016, 75(24): 17501-17514. [18] LIN B B, ZHANG S L, LIU Y, et al. Multi-scale temporal information extractor for gait recognition[C]//Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 2998-3002. [19] SPRAGER S, JURIC M. Inertial sensor-based gait recognition: a review[J]. Sensors, 2015, 15(9): 22089-22127. [20] BHARGAVAS W G, HARSHAVARDHAN K, MOHAN G C, et al. Human identification using gait recognition[C]//Proceedings of the 2017 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2017: 1510-1513. [21] MURRAY M P. Gait as a total pattern of movement: including a bibliography on gait[J]. American Journal of Physical Medicine & Rehabilitation, 1967, 46(1): 290-333. [22] HASAN M A M, AL ABIR F, AL SIAM M, et al. Gait recognition with wearable sensors using modified residual block-based lightweight CNN[J]. IEEE Access, 2022, 10: 42577-42588. [23] SHEN C F, CHAO F, WU W, et al. LidarGait: benchmarking 3D gait recognition with point clouds[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1054-1063. [24] ZHAO G Y, LIU G Y, LI H, et al. 3D gait recognition using multiple cameras[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2006: 529-534. [25] HAN J, BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2006, 28(2): 316-322. [26] WANG C, ZHANG J, PU J, et al. Chrono-gait image: a novel temporal template for gait recognition[C]//Proceedings of the 11th European Conference on Computer Vision, Heraklion, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 257-270. [27] CHEN C, LIANG J, ZHAO H, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977-984. [28] BASHIR K, XIANG T, GONG S. Gait recognition using gait entropy image[C]//Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention, London, Dec 3, 2009: 1-6. [29] 张红颖, 田鹏华. 结合残差网络与多级分块结构的步态识别方法[J]. 电子测量与仪器学报, 2022, 36(6): 66-72. ZHANG H Y, TIAN P H. Gait recognition method combining residual network and multi-level block structure[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(6): 66-72. [30] 周潇涵, 王修晖. 基于非对称双路识别网络的步态识别方法[J]. 计算机工程与应用, 2022, 58(4): 150-156. ZHOU X H, WANG X H. Novel gait recognition method based on asymmetric two-path network[J]. Computer Engineering and Applications, 2022, 58(4): 150-156. [31] XING W, LI Y, ZHANG S. View-invariant gait recognition method by three-dimensional convolutional neural network[J]. Journal of Electronic Imaging, 2018, 27(1): 013010. [32] LIAO R, CAO C, GARCIA E B, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]//Proceedings of the 12th Chinese Conference on Biometric Recognition, Shenzhen, Oct 28-29, 2017. Cham: Springer, 2017: 474-483. [33] 张超越, 张荣. 结合轮廓与姿态的时空融合步态识别方法[J]. 计算机工程与应用, 2023, 59(16): 135-142. ZHANG C Y, ZHANG R. Spatio-temporal fusion gait recognition method combining silhouette and pose[J]. Computer Engineering and Applications, 2023, 59(16): 135-142. [34] 段成阁, 刘康康, 李福全. 步态识别技术综述[J]. 中国人民公安大学学报(自然科学版), 2022, 28(4): 75-80. DUAN C G, LIU K K, LI F Q. Survey of gait recognition technology[J]. Journal of People??s Public Security University of China (Science and Technology), 2022, 28(4): 75-80. [35] 刘晓芳, 周航, 韩权, 等. 基于视觉的步态识别研究综述[J]. 小型微型计算机系统, 2018, 39(8): 1685-1692. LIU X F, ZHOU H, HAN Q, et al. Survey of vision-based gait recognition[J]. Journal of Chinese Computer Systems, 2018, 39(8): 1685-1692. [36] 祁磊, 于沛泽, 高阳. 弱监督场景下的行人重识别研究综述[J]. 软件学报, 2020, 31(9): 2883-2902. QI L, YU P Z, GAO Y. Research on weak-supervised person re-identification[J]. Journal of Software, 2020, 31(9): 2883-2902. [37] 徐岩, 郭晓燕, 荣磊磊. 无监督学习的车辆重识别方法研究综述[J]. 计算机科学与探索, 2023, 17(5): 1017-1037. XU Y, GUO X Y, RONG L L. Review of research on vehicle re-identification methods with unsupervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1017-1037. [38] 朱小鹏, 云利军, 张春节, 等. 基于深度学习的红外图像人体步态识别方法[J]. 计算机工程与设计, 2022, 43(3): 851-857. ZHU X P, YUN L J, ZHANG C J, et al. Gait recognition method based on deep learning in infrared image[J]. Computer Engineering and Design, 2022, 43(3): 851-857. [39] 杜兰, 陈晓阳, 石钰, 等. MMRGait-1.0: 多视角多穿着条件下的雷达时频谱图步态识别数据集[J]. 雷达学报, 2023, 12(4): 892-905. DU L, CHEN X Y, SHI Y, et al. MMRGait-1.0: a radar time-frequency spectrogram dataset for gait recognition under multi-view and multi-wearing conditions[J]. Journal of Radars,2023, 12(4): 892-905. [40] GROSS R, SHI J. The CMU motion of body (MoBo) database: CMU-RI-TR-01-18[R]. 2001. [41] SHUTLER J D, GRANT M G, NIXON M S, et al. On a large sequence-based human gait database[C]//Applications and Science in Soft Computing. Berlin, Heidelberg: Springer, 2004: 339-346. [42] PHILLIPS P J, SARKAR S, ROBLEDO I, et al. Baseline results for the challenge problem of HumanID using gait analy-sis[C]//Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition. Piscataway: IEEE, 2002: 137-142. [43] YU S Q, TAN T N, HUANG K Q, et al. A study on gait-based gender classification[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1905-1910. [44] ZHENG S, HUANG K Q, TAN T N. Evaluation framework on translation-invariant representation for cumulative foot pressure image[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 201-204. [45] ZHENG S, ZHANG J G, HUANG K Q, et al. Robust view transformation model for gait recognition[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 2073-2076. [46] MAKIHARA Y, MANNAMI H, TSUJI A, et al. The OU-ISIR gait database comprising the treadmill dataset[J]. IPSJ Transactions on Computer Vision and Applications, 2012, 4: 53-62. [47] IWAMA H, OKUMURA M, MAKIHARA Y, et al. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1511-1521. [48] HOFMANN M, GEIGER J, BACHMANN S, et al. The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 195-206. [49] XU C, MAKIHARA Y, LIAO R C, et al. Real-time gait-based age estimation and gender classification from a single image[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3459-3469. [50] ZHU Z, GUO X D, YANG T, et al. Gait recognition in the wild: a benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14789-14799. [51] ZHENG J, LIU X, LIU W, et al. Gait recognition in the wild with dense 3D representations and a benchmark[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20228-20237. [52] FAN C, HOU S, WANG J, et al. Learning gait representation from massive unlabelled walking videos: a benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14920-14937. [53] YU S, CHEN H, GARCIA REYES E B, et al. GaitGAN: invariant gait feature extraction using generative adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 30-37. [54] ZHANG P, WU Q, XU J S. VN-GAN: identity-preserved variation normalizing GAN for gait recognition[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. [55] LI S Q, LIU W, MA H D, et al. Beyond view transformation: cycle-consistent global and partial perception GAN for view-invariant gait recognition[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. [56] WANG Y Y, SONG C F, HUANG Y, et al. Learning view invariant gait features with two-stream GAN[J]. Neurocomputing, 2019, 339: 245-254. [57] HU B Z, GUAN Y, GAO Y, et al. Robust cross-view gait recognition with evidence: a discriminant gait GAN (DiGGAN) approach[EB/OL]. [2023-09-10]. https://arxiv.org/abs/1811.10493. [58] ZHANG P, WU Q, XU J S. VT-GAN: view transformation GAN for gait recognition across views[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. [59] TALAL E B, ORAIBI Z A, WALI A. Gait recognition using deep residual networks and conditional generative adversarial networks[C]//Proceedings of the 2023 IEEE 47th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2023: 1179-1185. [60] LIAO R J, AN W Z, YU S Q, et al. Dense-view GEIs set: view space covering for gait recognition based on dense-view GAN[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2009.12516. [61] CHEN X, LUO X Z, WENG J, et al. Multi-view gait image generation for cross-view gait recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 3041-3055. [62] TAKEMURA N, MAKIHARA Y, MURAMATSU D, et al. On input/output architectures for convolutional neural network-based cross-view gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2708-2719. [63] REN X Q, HOU S H, CAO C S, et al. Unsupervised gait recognition with selective fusion[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2303.10772. [64] YU W C, YU H Y, HUANG Y, et al. Generalized inter-class loss for gait recognition[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 141-150. [65] ALJAZAERLY M A A, MAKIHARA Y, MURAMATSU D, et al. Batch hard contrastive loss and its application to cross-view gait recognition[J]. IEEE Access, 2023, 11: 31177-31187. [66] ZHOU C C, GUAN X L, YU Z, et al. An innovative unsupervised gait recognition based tracking system for safeguarding large-scale nature reserves in complex terrain[J]. Expert Systems with Applications, 2024, 244: 122975. [67] ZHENG J K, LIU X C, YAN C G, et al. TraND: transferable neighborhood discovery for unsupervised cross-domain gait recognition[C]//Proceedings of the 2021 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2021: 1-5. [68] WANG L K, HAN R Z, FENG W, et al. From indoor to outdoor: unsupervised domain adaptive gait recognition[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2211.11155. [69] HABIB G, BARZILAY N, SHIMSHI O, et al. Watch where you head: a view-biased domain gap in gait recognition and unsupervised adaptation[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2307.06751. [70] MA K, FU Y, ZHENG D Z, et al. Fine-grained unsupervised domain adaptation for gait recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 11313-11322. [71] COLA G, AVVENUTI M, VECCHIO A, et al. An unsupervised approach for gait-based authentication[C]//Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. Piscataway: IEEE, 2015: 1-6. [72] XU D, YAN S C, TAO D C, et al. Human gait recognition with matrix representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(7): 896-903. [73] MANSSOR S A F, SUN S Y, ELHASSAN M A M. Real-time human recognition at night via integrated face and gait recognition technologies[J]. Sensors, 2021, 21(13): 4323. [74] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680. [75] YOO D, KIM N, PARK S, et al. Pixel-level domain transfer[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer,2016: 517-532. [76] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2223-2232. [77] CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 8789-8797. [78] MU F, GU X, GUO Y, et al. Unsupervised domain adaptation for position-independent IMU based gait analysis[C]//Proceedings of the 2020 IEEE Sensors. Piscataway: IEEE, 2020: 1-4. [79] ZHAO H, ZHANG S, WU G, et al. Adversarial multiple source domain adaptation[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 8568-8579. [80] ZHANG Z, JIANG S, HUANG C, et al. RGB-IR cross-modality person ReID based on teacher-student GAN model[J]. Pattern Recognition Letters, 2021, 150: 155-161. [81] ZHOU Z, LI Y, LI J, et al. GAN-siamese network for cross-domain vehicle re-identification in intelligent transport systems[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2779-2790. [82] BARDOU P, MARIETTE J, ESCUDIé F, et al. jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014, 15(1): 1-7. [83] 杨彦辰, 云利军, 梅建华, 等. 基于改进ViT的红外人体图像步态识别方法研究[J]. 应用光学, 2023, 44(1): 71-78. YANG Y C, YUN L J, MEI J H, et al. Gait recognition method of infrared human body images based on improved ViT[J]. Journal of Applied Optics, 2023, 44(1): 71-78. [84] 孙妍, 胡龙, 冯雪玲. 基于变换匹配层融合的双模态生物特征识别方法[J]. 计算机工程, 2023, 49(5): 269-276. SUN Y, HU L, FENG X L. Dual-modality biometric feature recognition method based on transform matching layer fusion[J]. Computer Engineering, 2023, 49(5): 269-276. |
[1] | WANG Bing, XU Pei, ZHANG Xingpeng. Research on Fourier Augmented Unbiased Cross-Domain Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448. |
[2] | XU Zhihong, ZHANG Huibin, DONG Yongfeng, WANG Liqin, WANG Xu. Question Feature Enhanced Knowledge Tracing Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475. |
[3] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[4] | XU Yanwei, LI Jun, DONG Yuanfang, ZHANG Xiaoli. Survey of Development of YOLO Object Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238. |
[5] | WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959. |
[6] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
[7] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[8] | WEN Wen, DENG Fengying, HAO Zhifeng, CAI Ruichu, LIANG Fangyu. Recommendation Method for Time-Sequence Point of Interest via Spatio-Temporal Vicinity Perception [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878. |
[9] | LIU Yuan, DONG Yongquan, CHEN Cheng, JIA Rui, YIN Chan. Graph Neural Network Integrating Hot Spots and Long and Short-Term Interests for Course Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. |
[10] | MIN Jiyuan, LU Tongyu, REN Tingting, CHEN Ruhao. Interpretable Machine Learning Algorithm Based on Rules Ensemble and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1476-1490. |
[11] | QIAN Zhongsheng, ZHANG Ding, LI Duanming, WANG Yahui, YAO Changsen, YU Qingyuan. Group Recommendation Model Based on User Common Intention and Social Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1368-1382. |
[12] | ZHAI Wenshuo, ZHAO Xiang, CHEN Dong. Source Localization of Network Information Propagation via Invertible Graph Diffusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1348-1356. |
[13] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[14] | CHEN Linying, LIU Jianhua, ZHENG Zhixiong, LIN Jie, XU Ge, SUN Shuihua. Multi-feature Interaction for Aspect Sentiment Triplet Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1057-1067. |
[15] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/