[1] PERITO D, CASTELLUCCIA C, ALI KAAFAR M, et al. How unique and traceable are usernames?[M]//Privacy enhancing technologies. Berlin, Heidelberg: Springer, 2011: 1-17.
[2] 刘兆丽, 秦涛, 管晓宏, 等. 采用用户名相似度传播模型的线上用户身份属性关联方法[J]. 西安交通大学学报, 2016, 50(4): 1-6.
LIU Z L, QIN T, GUAN X H, et al. A correlation method of online user identity attributes based on a propagation model of username similarities[J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 1-6.
[3] LI Y J, PENG Y, JI W L, et al. User identification based on display names across online social networks[J]. IEEE Access, 2017, 5: 17342-17353.
[4] ACQUISTI A, GROSS R, STUTZMAN F. Faces of Facebook: privacy in the age of augmented reality[J]. BlackHat USA, 2011, 2: 1-20.
[5] MOTOYAMA M, VARGHESE G. I seek you: searching and matching individuals in social networks[C]//Proceedings of the 11th International Workshop on Web Information and Data Management. New York: ACM, 2009: 67-74.
[6] ZHENG R, LI J X, CHEN H, et al. A framework for authorship identification of online messages: writing-style features and classification techniques[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 378-393.
[7] 霍腾飞. 基于用户行为深度建模的跨社交媒体用户身份链接[D]. 北京: 中国科学院大学, 2022.
HUO T F. Cross-social media user identity link based on deep modeling of user behavior[D]. Beijing: University of Chinese Academy of Sciences, 2022.
[8] 卢思变. 跨社交网络用户身份链接算法研究[D]. 成都: 电子科技大学, 2018.
LU S B. Research on user identity connection algorithm across social networks[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[9] LI Y J, JI W L, GAO X, et al. Matching user accounts with spatio-temporal awareness across social networks[J]. Information Sciences, 2021, 570: 1-15.
[10] KONG X N, ZHANG J W, YU S P. Inferring anchor links across multiple heterogeneous social networks[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2013: 179-188.
[11] ZHOU X P, LIANG X, ZHANG H Y, et al. Cross-platform identification of anonymous identical users in multiple social media networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(2): 411-424.
[12] ZHOU X P, LIANG X, DU X Y, et al. Structure based user identification across social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1178-1191.
[13] LIU L, CHEUNG W K, LI X, et al. Aligning users across social networks using network embedding[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 1774-1780.
[14] ZHANG Z B, GU Q H, YUE T, et al. Identifying the same person across two similar social networks in a unified way: globally and locally[J]. Information Sciences, 2017, 394: 53-67.
[15] TAN S L, GUAN Z Y, CAI D, et al. Mapping users across networks by manifold alignment on hypergraph[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 159-165.
[16] ZHAO W, TAN S L, GUAN Z Y, et al. Learning to map social network users by unified manifold alignment on hypergraph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 5834-5846.
[17] NIE Y P, JIA Y, LI S D, et al. Identifying users across social networks based on dynamic core interests[J]. Neurocomputing, 2016, 210: 107-115.
[18] 王李冬, 张引, 胡克用, 等. 跨社交网络用户身份关联技术[J]. 重庆理工大学学报(自然科学), 2021, 35(10): 152-162.
WANG L D, ZHANG Y, HU K Y, et al. Matching user profiles across multiple online social networks[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(10): 152-162.
[19] 杨奕卓, 于洪涛, 黄瑞阳, 等. 基于融合表示学习的跨社交网络用户身份匹配[J]. 计算机工程, 2018, 44(9): 45-51.
YANG Y Z, YU H T, HUANG R Y, et al. Cross-social network user identity matching based on fusion representation learning[J]. Computer Engineering, 2018, 44(9): 45-51.
[20] LI Y J, SU Z T, YANG J Q, et al. Exploiting similarities of user friendship networks across social networks for user identification[J]. Information Sciences, 2020, 506: 78-98.
[21] MAN T, SHEN H W, LIU S H, et al. Predict anchor links across social networks via an embedding approach[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 1823-1829.
[22] SHAO J L, WANG Y Q, GAO H, et al. AsyLink: user identity linkage from text to geo-location via sparse labeled data[J]. Neurocomputing, 2023, 515: 174-184.
[23] ZHANG J, CHEN B, WANG X M, et al. MEgo2Vec: embedding matched ego networks for user alignment across social networks[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 327-336.
[24] ZHOU F, LIU L, ZHANG K P, et al. DeepLink: a deep learning approach for user identity linkage[C]//Proceedings of the 2018 IEEE Conference on Computer Communications. Piscataway: IEEE, 2018: 1313-1321.
[25] FENG J, ZHANG M Y, WANG H D, et al. DPLink: user identity linkage via deep neural network from heterogeneous mobility data[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 459-469.
[26] 郭晓宇. 跨社交网络用户身份识别技术研究[D]. 郑州: 战略支援部队信息工程大学, 2020.
GUO X Y. Research on cross-social network user identification technology[D]. Zhengzhou: Information Engineering University, 2020.
[27] WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234.
[28] ZHANG J W, YU P S. PCT: partial co-alignment of social networks[C]//Proceedings of the 25th International Conference on World Wide Web. New York: ACM, 2016: 749-759.
[29] ZHANG Y T, TANG J, YANG Z L, et al. COSNET: connecting heterogeneous social networks with local and global consistency[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1485-1494.
[30] ZHANG J W, YU P S. Integrated anchor and social link predictions across social networks[C]//Proceedings of the 24th International Conference on Artificial Intelligence.Menlo Park: AAAI, 2015: 2125-2131. |