[1] SINGH V, DWIVEDI S K. Question answering: a survey of research, techniques and issues[J].?International Journal of Information Retrieval Research, 2014, 4(3): 14-33.
[2] GREEN B F, ALICE K W, CHOMSKY C, et al. Baseball: an automatic question-answerer[M]. New York: ACM, 1961: 219-224.
[3] WOODS W A. Progress in natural language understanding: an application to lunar geology[M]. New York: ACM, 1973: 441-450.
[4] BERNERSLEE T, HENDLER J, LASSILA O. The semantic web[J]. Scientific American, 2001, 284(5): 34-43.
[5] SHADBOLT N, HALL W, BERNERS-LEE T. The semantic web revisited[J]. IEEE Intelligent Systems, 2006, 21(3): 96-101.
[6] PUJARA J, HUI M, GETOOR L, et al. Knowledge graph identification[M]. Berlin: Springer, 2013: 542-557.
[7] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250.
[8] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[M]. Berlin: Springer, 2007: 722-735.
[9] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge unifying WordNet and Wikipedia[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 2007. New York: ACM, 2007: 697-706.
[10] WOOLDRIDGE M, JENNINGS N R. Intelligent agents: theory and practice[J]. Knowledge Engineering Review, 1995, 10(2): 115-152.
[11] MLADEMIC D. Text-learning and related intelligent agents: a survey[J]. IEEE Intelligent Systems & Their Applications, 2002, 14(4): 44-54.
[12] FAST E, CHEN B, MENDELSOHN J, et al. Iris: a conver-sational agent for complex tasks[J]. arXiv:1707.05015, 2017.
[13] DIEFENBACH D, LOPEZ V, SINGH K, et al. Core techni-ques of question answering systems over knowledge bases: a survey[J]. Knowledge and Information Systems, 2017, 55(3): 529-569.
[14] CHAKRABORTY N, LUKOVNIKOV D, MAHESHWARI G, et al. Introduction to neural network based approaches for question answering over knowledge graphs[J]. arXiv:1907. 09361, 2019.
[15] FU B, QIU Y, TANG C, et al. A survey on complex question answering over knowledge base: recent advances and challenges[J]. arXiv:2007.13069, 2020.
[16] DENG C Y, ZENG G F, CAI X Q, et al. A survey of knowledge based question answering with deep learning[J]. Journal on Artificial Intelligence, 2020, 2(4): 157-166.
[17] BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on Freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 18-21, 2013. Stroudsburg: ACL, 2013: 1533-1544.
[18] KWIATKOWSKI T, CHOI E, ARTZI Y, et al. Scaling semantic parsers with on-the-fly ontology matching[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 18-21, 2013. Stroudsburg: ACL, 2013: 1545-1556.
[19] BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 615-620.
[20] YAO X C, VAN DURME B. Information extraction over structured data: question answering with Freebase[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,?Jun 22-27, 2014. Stroudsburg: ACL, 2014: 956-966.
[21] YIH W T, HE X D, MEEK C. Semantic parsing for single-relation question answering[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Lin- guistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 643-648.
[22] BAO J W, DUAN N, ZHOU M, et al. Knowledge-based question answering as machine translation[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,?Jun 22-27, 2014. Stroudsburg: ACL, 2014: 967-976.
[23] BERANT J, LIANG P. Semantic parsing via paraphrasing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,?Jun 22-27, 2014.?Stroudsburg: ACL, 2014: 1415-1425.
[24] BORDES A, USUNIER N, CHOPRA S, et al. Large-scale simple question answering with memory networks[J]. arXiv:1506.02075, 2015.
[25] BAST H, HAUSSMANN E. More accurate question answering on Freebase[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Oct 2015. New York: ACM, 2015: 1431-1440.
[26] REDDY S, LAPATA M, STEEDMAN M. Large-scale sem-antic parsing without question-answer pairs[J]. Transactions of the Association for Computational Linguistics, 2014, 2(1): 377-392.
[27] YIH W T, CHANG M W, HE X, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1321-1331.
[28] XU K, REDDY S, FENG Y, et al. Question answering on Freebase via relation extraction and textual evidence[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Strou- dsburg: ACL, 2016: 2326-2336.
[29] LIANG C, BERANT J, LE Q, et al. Neural symbolic machines: learning semantic parsers on Freebase with weak supervision[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 23-33.
[30] XU K, FENG Y, HUANG S, et al. Hybrid question answering over knowledge base and free text[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 2397-2407.
[31] ANDREAS J, ROHRBACH M, DARRELL T, et al. Learning to compose neural networks for question answering[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 1545-1554.
[32] MILLER A H, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016.?Stroudsburg: ACL, 2016 :?1400-1409.
[33] ZHANG Y, DAI H, KOZAREVA Z, et al. Variational reasoning for question answering with knowledge graph[J]. arXiv: 1709.04071, 2017.
[34] CUI W, XIAO Y, WANG H, et al. KBQA: learning question answering over QA corpora and knowledge bases[J]. VLDB Endowment, 2017, 10(5): 565-576.
[35] YU M, YIN W, HASAN K S, et al. Improved neural relation detection for knowledge base question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 571-581.
[36] SOROKIN D, GUREVYCH I. Modeling semantics with gated graph neural networks for knowledge base question answering[C]//Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, Aug 20-26, 2018. Stroudsburg: ACL, 2018: 3306-3317.
[37] SUN H, DHINGRA B, ZAHEER M, et al. Open domain question answering using early fusion of knowledge bases and text[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4231-4242.
[38] TALMOR A, BERANT J. The web as a knowledge-base for answering complex questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 641-651.
[39] XU K, LAI Y X, FENG Y S, et al. Enhancing key-value memory neural networks for knowledge based question answering[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, Jun 2019. Stroudsburg: ACL, 2019: 2937-2947.
[40] MAHESHWARI G, TRIVEDI P, LUKOVNIKOV D, et al. Learning to rank query graphs for complex question answering over knowledge graphs[C]//LNCS 11778: Proceedings of the 18th International Semantic Web Conference, Auckland, Oct 26-30, 2019. Cham: Springer, 2019: 487-504.
[41] SUN H, BEDRAX-WEISS T, COHEN W W. PullNet: open domain question answering with iterative retrieval on know-ledge bases and text[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 2380-2390.
[42] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi- hop question answering over knowledge graphs using know-ledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10,?2020. Stroudsburg: ACL, 2020: 4498-4507.
[43] LAN Y S, JIANG J. Query graph generation for answering multi-hop complex questions from knowledge bases[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10,?2020. Stroudsburg: ACL, 2020: 969-974.
[44] WANG?X,?ZOU?L,?WANG?C K,?et al.?Research?on?know-ledge?graph?data?management:?a?survey[J].?Journal of Soft-ware,?2019, 30(7): 2139-2174.
王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(7): 2139-2174.
[45] LIANG P. Lambda dependency-based compositional semantics[J]. arXiv:1309.4408, 2013.
[46] WONG Y, MOONEY R. Learning synchronous grammars for semantic parsing with lambda calculus[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Jun 23-30, 2007. Stroudsburg: ACL, 2007: 960-967.
[47] KWIATKOWKSI T, ZETTLEMOYER L, GOLDWATER S, et al. Inducing probabilistic CCG grammars from logical form with higher-order unification[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, Oct 9-11, 2010. Stroudsburg: ACL, 2010: 1223-1233.
[48] ZETTLEMOYER L S, COLLINS M. Learning to map sentences to logical form: structured classification with probabilistic categorial grammars[J]. arXiv:1207.1420, 2012.
[49] YAHYA M, BERBERICH K, ELBASSUONI S, et al. Natural language questions for the web of data[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul?12-14, 2012. Stroudsburg: ACL, 2012: 379-390.
[50] YAHYA M, BERBERICH K, SSUONI S E B, et al. Robust question answering over the web of linked data[C]//Procee-dings of the 22nd ACM International Conference on Informa-tion and Knowledge Management, New York, Oct 2013. New York: ACM, 2013: 1107-1116.
[51] BERANT J, LIANG P. Imitation learning of agenda-based semantic parsers[J]. Transactions of the Association for Computational Linguistics, 2015, 3: 545-558.
[52] REDDY S, TCKSTRM O, COLLINS M, et al. Transforming dependency structures to logical forms for semantic parsing[J]. Transactions of the Association for Computational Ling-uistics, 2016, 4(2):127-140.
[53] REDDY S, TCKSTRM O, PETROV S, et al. Universal semantic parsing[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 89-101.
[54] FADER A, ZETTLEMOYER L, ETZIONI O. Open question answering over curated and extracted knowledge bases[C]//Proceedings of the 20th ACM SIGKDD International Conf-erence on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 1156-1165.
[55] LOPEZ V, MOTTA E. Ontology-driven question answering in AquaLog[C]//LNCS 3136: Proceedings of the 9th Inter-national Conference on Applications of Natural Languages to Information Systems, Salford, Jun 23-25, 2004. Berlin, Heidelberg: Springer, 2004: 89-102.
[56] LOPEZ V, UREN V, MOTTA E, et al. AquaLog: an ontology-driven question answering system for organizational semantic intranets[J]. Social Science Electronic Publishing, 2007, 5(2): 72-105.
[57] DAMLJANOVIC D, AGATONOVIC M, CUNNINGHAM H. Natural language interfaces to ontologies: combining synt-actic analysis and ontology-based lookup through the user interaction[M]. Berlin: Springer, 2010: 106-120.
[58] KAUFMANN E, BERNSTEIN A, FISCHER L. NLP-Reduce: a “naive” but domain-independent natural language interface for querying ontologies[C]//Proceedings of the 4th European Semantic Web Conference, Innsbruck, Jan 2007.
[59] LOPEZ V, UREN V S, SABOU M R, et al. Cross ontology query answering on the semantic web: an initial evaluation[C]//Proceedings of the 5th International Conference on Knowledge Capture, Redondo Beach, Sep 1-4, 2009. New York: ACM, 2009: 17-24.
[60] MANACHER G K. An improved version of the Cocke-Younger-Kasami algorithm[J]. Computer Languages, 1978, 3(2): 127-133.
[61] OCH F J. Minimum error rate training in statistical machine translation[C]//Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Jul 7-12, 2003. Stroudsburg: ACL, 2003:?160-167.
[62] YIN P, DUAN N, KAO B, et al. Answering questions with complex semantic constraints on open knowledge bases[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 1301-1310.
[63] BOS J, CLARK S, STEEDMAN M, et al. Wide-coverage semantic representations from a CCG parser[C]//Proceedings of the 20th International Conference on Computational Lin-guistics, Geneva, Aug 23-27, 2004: 1240-1246.
[64] LEI Z, HUANG R, WANG H, et al. Natural language question answering over RDF—a graph data driven approach[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Jun 22-27, 2014. New York: ACM, 2014: 313-324.
[65] SHEKARPOUR S, MARX E, NGOMO A C, et al. SINA: semantic interpretation of user queries for question answering on interlinked data[J]. Journal of Web Semantics, 2015, 30: 39-51.
[66] ZHENG W, LEI Z, XIANG L, et al. How to build templates for RDF question/answering: an uncertain graph similarity join approach[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, May 31-Jun 4, 2015. New York: ACM, 2015: 1809-1824.
[67] SAVENKOV D, AGICHTEIN E. When a knowledge base is not enough: question answering over knowledge bases with external text data[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Jul 17-21, 2016. New York: ACM, 2016: 235-244.
[68] CAI Q, YATES A. Large-scale semantic parsing via schema matching and lexicon extension[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Aug 4-9,?2013. Stroudsburg: ACL, 2013: 423-433.
[69] FADER A, ZETTLEMOYER L, ETZIONI O. Paraphrase-driven learning for open question answering[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Aug 4-9, 2013. Stroudsburg: ACL, 2013: 1608-1618.
[70] USBECK R, NGOMO A, BUHMANN L, et al. HAWK—hybrid question answering using linked data[C]//LNCS 9088: Proceedings of the?12th European Semantic Web Conference, Portoroz, May 31-Jun 4, 2015.?Cham: Springer, 2015: 353-368.
[71] YAO X C. Lean question answering over Freebase from scratch[C]//Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics, Denver, May 31-Jun 5, 2015. Stroudsburg: ACL, 2015: 66-70.
[72] UNGER C, BUHMANN L, LEHMANN J, et al. Template-based question answering over RDF data[C]//Proceedings of the 21st International Conference on World Wide Web, Lyon, Apr 16-20, 2012. New York: ACM, 2012: 639-648.
[73] ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Auto-mated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7,?2017. New York: ACM, 2017: 1191-1200.
[74] HU S, ZOU L, YU J X, et al. Answering natural language questions by subgraph matching over knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(5): 824-837.
[75] BORDES A, WESTON J, USUNIER N. Open question answering with weakly supervised embedding models[C]//LNCS 8724: Proceedings of the 2014 European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, Sep 15-19, 2014.?Cham: Springer, 2014: 165-180.
[76] ZHOU M, HUANG M, ZHU X. An interpretable reasoning network for multi-relation question answering[C]//Proceedings of the 27th International Conference on Computational Lin-guistics, Santa Fe, Aug 20-26, 2018. Stroudsburg: ACL,2018: 2010-2022.
[77] SUN H, ARNOLD A O, BEDRAX-WEISS T, et al. Faithful embeddings for knowledge base queries[C]//Advances in Neural Information Processing Systems 33: Proceedings of the Annual Conference on Neural Information Processing Systems, Dec 6-12, 2020: 22505-22516.
[78] WESTON J, CHOPRA S, BORDES A. Memory networks[J]. arXiv:1410.3916, 2014.
[79] JAIN S. Question answering over knowledge base using factual memory networks[C]//Proceedings of the 2016 Con-ference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Student Research Workshop, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 109-115.
[80] HE X D, GOLUB D. Character-level question answering with attention[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 1598-1607.
[81] CHEN Z Y, LIAO J Z, ZHAO X, et al. Incorporating subgraph structure knowledge base question answering via neural reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1870-1879.
陈子阳, 廖劲智, 赵翔, 等. 融合子图结构的神经推理式知识库问答方法[J]. 计算机科学与探索, 2021, 15(10): 1870-1879.
[82] YAVUZ S, GUR I, SU Y, et al. Improving semantic parsing via answer type inference[C]//Proceedings of the 2016 Con-ference on Empirical Methods in Natural Language Proce-ssing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 149-159.
[83] DONG L, MALLINSON J, REDDY S, et al. Learning to paraphrase for question answering[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 875-886.
[84] ANSARI G A, SAHA A, KUMAR V, et al. Neural program induction for KBQA without gold programs or query annotations[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4890-4896.
[85] SAHA A, ANSARI G A, LADDHA A, et al. Complex program induction for querying knowledge bases in the absence of gold programs[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 185-200.
[86] HUA Y, LI Y F, HAFFARI G, et al. Few-shot complex knowledge base question answering via meta reinforcement learning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20,?2020. Stroudsburg: ACL, 2020: 5827-5837.
[87] YHA D, YFL B, GQA C, et al. Less is more: data-efficient complex question answering over knowledge bases[J]. Journal of Web Semantics, 2020, 65: 100612.
[88] HU S, ZOU L, ZHANG X B. A state-transition framework to answer complex questions over knowledge base[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2098-2108.
[89] BAO J W, NAN D, YAN Z, et al. Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 2503-2514.
[90] LUO K, LIN F, LUO X, et al. Knowledge base question answering via encoding of complex query graphs[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2185-2194.
[91] XU K, WU L, WANG Z, et al. Exploiting rich syntactic information for semantic parsing with graph-to-sequence model[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 918-924.
[92] DONG L, WEI F R, ZHOU M, et al. Question answering over Freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 260-269.
[93] HAO Y, ZHANG Y, KANG L, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 221-231.
[94] MOHAMMED S, SHI P, LIN J. Strong baselines for simple question answering over knowledge graphs with and without neural networks[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Compu-tational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 291-296.
[95] YANG M C, NAN D, MING Z, et al. Joint relational embed-dings for knowledge-based question answering[C]//Procee-dings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stro-udsburg: ACL, 2014:?645-650.
[96] YIN W P, YU M, XIANG B, et al. Simple question answering by attentive convolutional neural network[J]. arXiv:1606. 03391, 2016.
[97] ZHANG Y Z, LIU K, HE S Z, et al. Question answering over knowledge base with neural attention combining global knowledge information[J]. arXiv:1606.00979, 2016.
[98] GUPTA V, CHINNAKOTLA M, SHRIVASTAVA M. Retrieve and re-rank: a simple and effective IR approach to simple question answering over knowledge graphs[C]//Proceedings of the 1st Workshop on Fact Extraction and verification, 2018: 22-27.
[99] ZHANG Y Y, QIAN S S, FANG Q, et al. Multi-modal knowledge-aware attention network for question answering[J]. Journal of Computer Research and Development, 2020, 57(5): 1037-1045.
张莹莹, 钱胜胜, 方全, 等. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
[100] LIN Q K, ZHANG L L, LIU J, et al. Question-aware graph convolutional network for educational knowledge base question answering[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1880-1887.
蔺奇卡, 张玲玲, 刘均, 等. 基于问句感知图卷积的教育知识库问答方法[J]. 计算机科学与探索, 2021, 15(10): 1880-1887.
[101] XIONG W H, YU M, CHANG S Y, et al. Improving question answering over incomplete KBs with knowledge-aware reader[J]. arXiv:1905.07098, 2019.
[102] FELLBAUM C, MILLER G. WordNet: an electronic lexical database[M]. Cambridge: MIT Press, 2000: 706-708.
[103] VRANDECIC D, KRTOETZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85.
[104] SERBAN I V, GARCIA-DURAN A, GULCEHRE C, et al. Generating factoid questions with recurrent neural net-works: the 30M factoid question-answer corpus[C]//Pro-ceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Strou-dsburg: ACL, 2016: 588-598.
[105] BAO J W, DUAN N, YAN Z, et al. Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 2503-2514.
[106] YIN P, DUAN N, KAO B, et al. Answering questions with complex semantic constraints on open knowledge bases[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 1301-1310.
[107] YIH W T, RICHARDSON M, MEEK C, et al. The value of semantic parse labeling for knowledge base question answering[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 201-206.
[108] TALMOR A, BERANT J. The web as a knowledge-base for answering complex questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 641-651.
[109] YU S, SUN H, SADLER B, et al. On generating characteristic-rich question sets for QA evaluation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 562-572.
[110] ZHOU M, HUANG M, ZHU X. An interpretable reasoning network for multi-relation question answering[C]//Procee-dings of the 27th International Conference on Computa-tional Linguistics, Santa Fe, Aug 20-26, 2018. Strouds-burg: ACL, 2018: 2010-2022.
[111] CIMIANO P, LOPEZ V, UNGER C, et al. Multilingual question answering over linked data (QALD-3): lab over-view[C]//LNCS 8138: Proceedings of the 4th Interna-tional Conference of the Cross-Language Evaluation Forum for European Languages: Information Access Evaluation, Multilinguality, Multimodality, and Visualization, Valencia, Sep 23-26, 2013. Berlin: Springer, 2013: 321-332.
[112] UNGER C, FORASCU C, LOPEZ V, et al. Question answering over linked data (QALD-4)[C]//Working Notes for CLEF 2014 Conference, Sheffield, Sep 15-18, 2014: 1172-1180.
[113] UNGER C, FORESCU C, LOPEZ V, et al. Question answering over linked data (QALD-5)[C]//Working Notes for CLEF 2015-Conference and Labs of the Evaluation Forum, Toulouse, Sep 8-11, 2015.
[114] UNGER C, NGOMO A, CABRIO E. 6th open challenge on question answering over linked data (QALD-6)[C]// Semantic Web Challenges: 3rd SemWebEval Challenge at ESWC 2016, Heraklion, May 29-Jun 2, 2016. Cham: Springer, 2016: 171-177.
[115] USBECK R, NGOMO A, HAARMANN B, et al. Open challenge on question answering over linked data (QALD-7)[C]//Semantic Web Challenges: 4th SemWebEval Challe-nge at ESWC 2017, Portoroz, May 28-Jun 1, 2017. Cham: Springer, 2017: 59-69.
[116] TRIVEDI P, MAHESHWARI G, DUBEY M, et al. LC-QuAD: a corpus for complex question answering over knowledge graphs[C]//LNCS 10588: Proceedings of the 16th Interna-tional Semantic Web Conference, Vienna, Oct 21-25, 2017. Cham: Springer, 2017: 210-218.
[117] DUBEY M, BANERJEE D, ABDELKAWI A, et al. LC-QuAD 2.0: a large dataset for complex question answer-ing over Wikidata and DBpedia[C]//LNCS 11779: Procee-dings of the 18th International Semantic Web Conference, Auckland, Oct 26-30, 2019. Cham: Springer, 2019: 69-78. |