[1] LIANG J, CHAI Y M, YUAN H B, et al. Deep learning for Chinese micro-blog sentiment analysis[J]. Journal of Chinese Information Processing, 2014, 28(5): 155-161.
梁军, 柴玉梅, 原慧斌, 等. 基于深度表示学习的微博情感分析[J]. 中文信息学报, 2014, 28(5): 155-161.
[2] BALIKAS G, MOURA S, AMINI M R. Multitask learning for fine-grained Twitter sentiment analysis[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Aug 7-11, 2017: 1005-1008.
[3] HU Z K, HU J Q, DING W F, et al. Review sentiment analysis based on deep learning[C]//Proceedings of the 12th International Conference on e-Business Engineering, Beijing, Oct 23-25, 2015. Washington: IEEE Computer Society, 2015: 87-94.
[4] ZHOU J Y, GUO Y, DING Y D. Sentiment analysis of Chinese movie reviews based on deep learning[J]. Journal of Shanghai University (Natural Science), 2018, 24(5): 703-712.
周敬一, 郭燕, 丁友东. 基于深度学习的中文影评情感分析[J]. 上海大学学报(自然科学版), 2018, 24(5): 703-712.
[5] WANG M, XU J. Emotional analysis and comparative study of bullet-screen comments and subtitles[J]. Document, Informaiton & Knowledge, 2019, 191(5): 109-119.
王敏, 徐健. 视频弹幕与字幕的情感分析与比较研究[J]. 图书情报知识, 2019, 191(5): 109-119.
[6] XIE R B, YUAN X C, LIU Z Y, et al. Lexical sememe prediction via word embeddings and matrix factorization[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4200-4206.
[7] YAO T F, LOU D C. Study of discrimination of Chinese emotional words meaning tendency[C]//Proceedings of the 7th International Conference on Chinese Computing, Wuhan, Oct 13-15, 2007: 221-225.
姚天昉, 娄德成. 汉语情感词语义倾向判别的研究[C]//第七届中文信息处理国际学术会议, 武汉, 2007: 221-225.
[8] BACCIANELLA S, ESULI A, SEBASTIANI F. SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining[C]//Proceedings of the 7th Conference on International Language Resources and Evaluation, Valletta, May 17-23, 2010. European Language Resources Association, 2010: 2200-2204.
[9] NEGI S, BUITELAAR P. INSIGHT Galway: syntactic and lexical features for aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 346-350.
[10] YANG X P, ZHANG Z X, WANG L, et al. Automatic construction and optimization of sentiment lexicon based on Word2Vec[J]. Computer Science, 2017, 44(1): 42-47.
杨小平, 张中夏, 王良, 等. 基于Word2Vec 的情感词典自动构建与优化[J]. 计算机科学, 2017, 44(1): 42-47.
[11] DAS B, CHAKRABORTY S. An improved text sentiment classification model using TF-IDF and next word negation[J]. arXiv:1806.06407, 2018.
[12] KIRITCHENKO S, ZHU X D, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 437-442.
[13] TOMAS M, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119.
[14] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543.
[15] RAJPURKAR P, ZHANG J, LOPYREV K, et al. Squad: 100,000+questions for machine comprehension of text[J]. arXiv:1606.05250, 2016.
[16] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv:1802.05365, 2018.
[17] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6000-6010.
[19] DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[J]. arXiv:1901.02860, 2019.
[20] YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[J]. arXiv:1906.08237, 2019.
[21] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Procee-dings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-15.
[22] PANG B, LEE L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, University of Michigan, Jun 25-30, 2005. Stroudsburg: ACL, 2005: 115-124.
[23] KIRITCHENKO S, ZHU X D, MOHAMMAD S M. Sentiment analysis of short informal texts[J]. Journal of Artificial Intelligence Research, 2014, 50: 723-762.
[24] TANG D Y, QIN B, LIU T. Learning semantic representations of users and products for document level sentiment classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1014-1023.
[25] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 1480-1489.
[26] WU F Z, ZHANG J, YUAN Z G, et al. Sentence level sentiment classification with weak supervision[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Aug 7-11, 2017. New York: ACM, 2017: 973-976.
[27] WANG H, LIU B, LI C Z, et al. Learning with noisy labels for sentence-level sentiment classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6286-6292.
[28] WANG Y Q, SUN A X, HAN J L, et al. Sentiment analysis by capsules[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1165-1174.
[29] VO D T, ZHANG Y. Target-dependent Twitter sentiment classification with rich automatic features[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 1347-1353.
[30] LIANG B, DU J C, XU R F, et al. Context-aware embedding for targeted aspect-based sentiment analysis[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4678-4683.
[31] DUAN M M. The research of text sentiment analysis based on the fusion of dictionary and word vector[D]. Xi??an: Xidian University, 2019.
段敏敏. 基于词典与词向量融合的文本情感分析研究[D]. 西安: 西安电子科技大学, 2019.
[32] LIN S P, LIN S H, WEI J J, et al. Emotional classification of combining knowledge graph[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(3): 269-275.
林世平, 林松海, 魏晶晶, 等. 融合知识图谱的文本情感分析[J]. 福州大学学报(自然科学版), 2020, 48(3): 269-275.
[33] LIU S D, WANG L, WU J L, et al. A short text sentiment analysis method based on social relationship enhancement[J]. Engineering Journal of Wuhan University,2020, 53(9): 838-846.
刘树栋, 王磊, 武璟珑, 等. 基于社交关系增强的短文本情感分析方法[J]. 武汉大学学报(工学版),2020, 53(9): 838-846.
[34] TANG H, JI D H, LI C L, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6578-6588.
[35] HUANG B X, OU Y L, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//LNCS 10899: Proceedings of the 11th International Conference on Social, Cultural, and Behavioral Modeling, Washington, Jul 10-13, 2018. Berlin, Heidelberg: Springer, 2018: 197-206.
[36] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 3433-3442.
[37] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 3298-3307.
[38] YANG C L, LIU Z, LU M Y. Text sentiment analysis model of two channel hybrid neural network[J]. Computer Engineering and Applications, 2020, 56(11): 124-128.
杨长利, 刘智, 鲁明羽. 双通道混合神经网络的文本情感分析模型[J]. 计算机工程与应用, 2020, 56(11): 124-128.
[39] WANG Y Q, HUANG M L, ZHAO L, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 606-615.
[40] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4068-4074.
[41] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 452-461.
[42] XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1091-1096.
[43] HUANG B X, CARLEY K M. Parameterized convolutional neural networks for aspect level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 1091-1096.
[44] TANG D Y, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 214-224.
[45] FAN C, GAO Q H, DU J C, et al. Convolution-based memory network for aspect-based sentiment analysis[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 1161-1164.
[46] SONG Y W, WANG J H, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv: 1902.09314, 2019.
[47] LUO Z J, KE M S, ZHOU D Q. Research on text sentiment analysis model based on improved LSTM[J]. Computer Technology and Development, 2020, 30(12): 40-44.
罗正军, 柯铭菘, 周德群. 基于改进型LSTM的文本情感分析模型研究[J]. 计算机技术与发展, 2020, 30(12): 40-44.
[48] LIN P Q, YANG M, LAI J H. Deep mask memory network with semantic dependency and context moment for aspect level sentiment classification[C]//KRAUS S. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 5088-5094.
[49] LU T L, CHEN L. End-to-end multi-hop memory network for aspect-level sentiment analysis[J]. Application Research of Computers, 2021, 38(4): 1-9.
卢天兰, 陈荔. 面向方面级别情感分析的端到端多跳记忆网络[J]. 计算机应用研究, 2021, 38(4): 1-9.
[50] CHEN J J. Research on aspect-level sentiment analysis method based on graph convolutional network[D]. Huhhot: Inner Mongolia University, 2020.
陈俊杰. 基于图卷积网络的方面级情感分析方法研究[D]. 呼和浩特:内蒙古大学, 2020.
[51] MA Y K, PENG H Y, CAMBRIA E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Stroudsburg: ACL, 2018: 5876-5883.
[52] CHEN F, HUANG Y F. Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews[J]. Neurocomputing, 2019, 368: 51-58.
[53] ZOU X M, YANG J, ZHANG J, et al. Microblog sentiment analysis with weak dependency connections[J]. Knowledge Based Systems, 2018, 142: 170-180.
[54] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4567-4577.
[55] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3229-3238.
[56] ZHOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205: 106292.
[57] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12.
[58] PENG H Y, MA Y K, LI Y, et al. Learning multi-grained aspect target sequence for Chinese sentiment analysis[J]. Knowledge Based Systems, 2018, 148: 167-176.
[59] XU N, MAO W J, CHEN G D. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 371-378.
[60] FAN Z F, WU Z, DAI X Y, et al. Target-oriented opinion words extraction with target-fused neural sequence labeling [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2509-2518.
[61] AKHTAR M S, GARG T, EKBAL A, et al. Multi-task learning for aspect term extraction and aspect sentiment classification[J]. Neurocomputing, 2020, 398: 247-256.
[62] HE R D, LEE W S, NG H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 504-515.
[63] WAN H, YANG Y F, DU J F, et al. Target-aspect-sentiment joint detection for aspect-based sentiment analysis[C]//Proceedings of the 34th Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 9122-9129.
[64] LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, San Francisco, Jun, 2001. New York: ACM, 2001: 282-289.
[65] WANG W Y, PAN S J, DAHLMEIER D, et al. Multi-task memory networks for category-specific aspect and opinion terms co-extraction[J]. arXiv:1702.01776, 2017.
[66] HU M T, ZHAO S W, ZHANG L, et al. CAN: constrained attention networks for multi-aspect sentiment analysis[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4600-4609.
[67] LI Y C, YIN C X, ZHONG S H. Sentence constituent-aware aspect-category sentiment analysis with graph attention networks[C]//LNCS 12430: Proceedings of the 9th CCF International Conference on Natural Language Processing and Chinese Computing, Zhengzhou, Oct 14-18, 2020: 815-827.
[68] CHEN H, HUANG B, ZHU Y M, et al. Short text emotion classification method combining LDA and Self-Attention [J]. Computer Engineering and Applications, 2020, 56(18): 165-170.
陈欢, 黄勃, 朱翌民, 等. 结合LDA与Self-Attention的短文本情感分类方法[J]. 计算机工程与应用, 2020, 56(18): 165-170.
[69] GUI L, LENG J, ZHOU J Y, et al. Multi-task learning with mutual learning for joint sentiment classification and topic detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2020.
[70] QIN L B, CHE W X, LI Y M, et al. DCR-Net: a deep co- interactive relation network for joint dialog act recognition and sentiment classification[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8665-8672.
[71] LI Z, WEI Y, ZHANG Y, et al. Exploiting coarse-to-fine task transfer for aspect-level sentiment classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 4253-4260.
[72] DU C N, SUN H F, WANG J Y, et al. Adversarial and domain-aware BERT for cross-domain sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4019-4028.
[73] ZHOU G Y, ZENG Z, HUANG J X, et al. Transfer learn- ing for cross-lingual sentiment classification with weakly shared deep neural networks[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Jul 17-21, 2016. New York: ACM, 2016: 245-254.
[74] WANG Y. The research and implementation of transfer learning based sentiment analysis[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
王源. 基于迁移学习的情感分析算法的研究与实现[D]. 北京:北京邮电大学, 2019.
[75] LI Z, LI X, WEI Y, et al. Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. New York: ACM, 2019: 4589-4599.
[76] LAMBERT P. Aspect-level cross-lingual sentiment classification with constrained SMT[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 781-787.
[77] TAN S, ZHANG J. An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
[78] LI Y, Lv Y, WANG S G, et al. Cooperative hybrid semi-supervised learning for text sentiment classification[J]. Symmetry, 2019, 11(2): 133.
[79] WANG Y, LI Z H, LIU J, et al. Word vector modeling for sentiment analysis of product reviews[C]//Proceedings of the 3rd CCF Conference on Natural Language Processing and Chinese Computing, Shenzhen, Dec 5-9, 2014. Berlin, Heidelberg: Springer, 2014: 168-180.
[80] MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Jun 19-24, 2011. Stroudsburg: ACL, 2011: 142-150.
[81] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 49-54.
[82] SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 18-23, 2013. Stroudsburg: ACL, 2013: 1631-1642.
[83] SAEIDI M, BOUCHARD G, LIAKATA M, et al. SentiHood: targeted aspect based sentiment analysis dataset for urban neighbourhoods[J]. arXiv:1610.03771, 2016.
[84] AKHTAR M S, EKBAL A, BHATTACHARYYA P. Aspect based sentiment analysis in Hindi: resource creation and evaluation[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, Portoro?, May 23-28, 2016: 2703-2709. |