[1] RUMELHART D E, HINTON G E, WILLIAMS R J. Lear-ning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[2] BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4/5): 291-294.
[3] LAW A, GHOSH A. Multi-label classification using a cascade of stacked autoencoder and extreme learning machines[J]. Neurocomputing, 2019, 358: 222-234.
[4] AAMIR M, NAWI N M, WAHID F, et al. A deep contractive autoencoder for solving multiclass classification problems[J]. Evolutionary Intelligence, 2020: 1-15.
[5] LIU X Y, LIU J Q. Gait recognition method of underground coal mine personnel based on densely connected convolution network and stacked convolutional autoencoder[J]. Entropy, 2020, 22(6): 695.
[6] RIBEIRO M, LAZZARETTI A E, LOPES H S, et al. A study of deep convolutional auto-encoders for anomaly detection in videos[J]. Pattern Recognition Letters, 2018, 105: 13-22.
[7] LIU J R, WANG S P, YANG W Y, et al. Sparse autoencoder for social image understanding[J]. Neurocomputing, 2019, 369: 122-133.
[8] ZHANG Y, PENG H. Sample reconstruction with deep auto-encoder for one sample per person face recognition[J]. IET Computer Vision, 2017, 11(6): 471-478.
[9] LUCHNIKOV I, RYZHOV A, STAS P J C, et al. Variational autoencoder reconstruction of complex many-body physics[J]. Entropy, 2019, 21(11): 1091.
[10] SUN H, XU W, DENG C, et al. Multi-digit image synthesis using recurrent conditional variational autoencoder[C]//Pro-ceedings of the 2016 International Joint Conference on Neural Networks, Vancouver, Jul 24-29, 2016. Piscataway: IEEE, 2016: 375-380.
[11] MASCI J, MEIER U, CIRESAN D, et al. Stacked convolu-tional auto-encoders for hierarchical feature extraction[C]//Proceedings of the 2011 International Conference on Artificial Neural Networks, Espoo, Jun 14-17, 2011. Berlin, Heidelberg: Springer, 2011: 52-59.
[12] DU B, XIONG W, WU J, et al. Stacked convolutional denoising auto-encoders for feature representation[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 1017-1027.
[13] ZHANG Q, YANG L T, CHEN Z, et al. Deep computation model for unsupervised feature learning on big data[J]. IEEE Transactions on Services Computing, 2016, 9(1): 161-171.
[14] NG A. Sparse autoencoder[Z]. CS294A Lecture Notes, 2011: 1-19.
[15] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014.
[16] LIU W F, MA T Z, XIE Q S, et al. LMAE: a large margin auto-encoders for classification[J]. Signal Processing, 2017, 141: 137-143.
[17] RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. New York: ACM, 2011: 833-840.
[18] XIE J, FANG Y, ZHU F, et al. Deep shape: deep learned shape descriptor for 3D shape matching and retrieval[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 8-10, 2015. Piscataway: IEEE, 2015: 1275-1283.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Confer-ence on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[20] XU J, XIANG L, LIU Q, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130.
[21] GLOROT X, BORDES A, BENGIO Y, et al. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
[22] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 22-25, 2017. Piscataway: IEEE, 2017: 4700-4708.
[23] HAN Z, WEI B, MERCADO A, et al. Spine-GAN: semantic segmentation of multiple spinal structures[J]. Medical Image Analysis, 2018, 50: 23-35.
[24] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jul 5-9, 2008. New York: ACM, 2008: 1096-1103.
[25] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[26] ZHANG K, LIU X, SHEN J, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography[J]. Cell, 2020, 181(6): 1423-1433.
[27] HAN Z, WEI B, HONG Y, et al. Accurate screening of COVID-19 using attention based deep 3D multiple instance learning[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2584-2594. |