[1] CREUSEN I M, WIJNHOVEN R G, HERBSCHLEB E, et al. Color exploitation in hog-based traffic sign detection[C]//Proceedings of the 2010 International Conference on Image Processing, Hong Kong, China, Sep 26-29, 2010. Piscataway: IEEE, 2010: 2669-2672.
[2] LE T T, TRAN S T, MITA S, et al. Real time traffic sign detect-ion using color and shape-based features[C]//LNCS 5991: Proceedings of the 2nd International Conference on Intel-ligent Information and Database Systems, Hue City, Mar 24, 2010. Berlin, Heidelberg: Springer, 2010: 268-278.
[3] 张静, 何明一, 戴玉超, 等. 多特征融合的圆形交通标志检测[J]. 模式识别与人工智能, 2011, 24(2): 226-232.
ZHANG J, HE M Y, DAI Y C, et al. Multi-feature fusion based circular traffic sign detection[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(2): 226-232.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE/CVF Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Piscataway: IEEE, 2005: 886-893.
[5] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic seg-mentation[C]//Proceedings of the 2014 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 580-587.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: to-wards real-time object detection with region proposal net-works[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2017, 39(6): 1137-1149.
[8] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
[9] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2020, 42(2): 386-397.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[11] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 779-788.
[13] REDMON J, FARHADI A. YOLOv3: an incremental im-provement[J]. arXiv:1804.02767, 2018.
[14] Ultralytics. YOLOv5[EB/OL]. [2022-12-05]. https://github.com/ultralytics/yolov5/releases/tag/v6.0.
[15] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[16] LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object detection[C]//Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1951-1959.
[17] 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937.
ZHAO P F, XIE L B, PENG L. Deep small object detection algorithm integrating attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937.
[18] 尚晓可, 安南, 尚敬捷, 等. 结合视觉显著性与注意力机制的低光照图像增强[J]. 模式识别与人工智能, 2022, 35(7): 602-613.
SHANG X K, AN N, SHANG J J, et al. Combining visual saliency and attention mechanism for low-light image en-hancement[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(7): 602-613.
[19] ZHANG R, WU Y, GOU W, et al. RS-Lane: a robust lane detection method based on ResNeSt and self-attention dis-tillation for challenging traffic situations[J]. Journal of Advanced Transportation, 2021: 7544355.
[20] ZHANG J, HUI L, LU J F, et al. Attention-based neural net-work for traffic sign detection[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 1839-1844.
[21] WANG J F, CHEN Y, GAO M Y, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. arXiv:2112.08782, 2021.
[22] 郭璠, 张泳祥, 唐琎, 等. YOLOv3-A: 基于注意力机制的交通标志检测网络[J]. 通信学报, 2021, 42(1): 87-99.
GUO F, ZHANG Y X, TANG J, et al. YOLOv3-A: a traffic sign detection network based on attention mechanism[J]. Journal on Communications, 2021, 42(1): 87-99.
[23] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[24] OLIVA A, TORRALBA A. The role of context in object rec-ognition[J]. Trends in Cognitive Sciences, 2007, 11(12): 520-527.
[25] HU P, RAMANAN D. Finding tiny faces[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1522-1530.
[26] 马宇, 张丽国, 杜慧敏, 等. 卷积神经网络的交通标志语义分割[J]. 计算机科学与探索, 2021, 15(6): 1114-1121.
MA Y, ZHANG L G, DU H M, et al. Traffic sign semantic segmentation based on convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1114-1121.
[27] CHEN J, JIA K, CHEN W, et al. A real-time and high-pre-cision method for small traffic-signs recognition[J]. Neural Computing and Applications, 2022, 34(3): 2233-2245.
[28] YUAN Y, XIONG Z T, WANG Q. VSSA-NET: vertical spa-tial sequence attention network for traffic sign detection[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3423-3434.
[29] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Compu-ter Society, 2018: 8759-8768.
[30] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recog-nition at scale[J]. arXiv:2010.11929, 2020.
[31] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002.
[32] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1577-1586.
[33] LI Z S, CHEN M M, HE Y F, et al. An efficient framework for detection and recognition of numerical traffic signs[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 22-27, 2022. Piscataway: IEEE, 2022: 2235-2239.
[34] ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detec-tion and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2110-2118.
[35] NOH J, BAE W, LEE W, et al. Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9724-9733.
[36] DENG C F, WANG M M, LIU L, et al. Extended feature pyra-mid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
[37] TABERNIK D, SKO?AJ D. Deep learning for large-scale traffic-sign detection and recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1427-1440.
[38] SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Procee-dings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 14454-14463.
[39] CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[J]. arXiv:1906.07155, 2019.
[40] GE Z, LIU S T, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. |