计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (12): 2840-2860.DOI: 10.3778/j.issn.1673-9418.2303026
孟祥福,霍红锦,张霄雁,王琬淳,朱金侠
出版日期:
2023-12-01
发布日期:
2023-12-01
MENG Xiangfu, HUO Hongjin, ZHANG Xiaoyan, WANG Wanchun, ZHU Jinxia
Online:
2023-12-01
Published:
2023-12-01
摘要: 个性化新闻推荐是帮助用户获取其感兴趣的新闻信息和缓解信息过载的重要技术。近年来,随着信息技术和社会发展,个性化新闻推荐得到了日益广泛的研究,并在改善用户的新闻阅读体验方面取得了显著成功。对基于深度学习的个性化新闻推荐方法进行了系统性综述。首先,分类介绍了个性化新闻推荐方法并分析各自特点及影响因素;然后,给出了个性化新闻推荐的总体框架,并对基于深度学习的个性化新闻推荐方法进行了分析总结;在此基础上,重点综述了基于图结构学习的个性化新闻推荐方法,包括基于用户-新闻交互图、知识图谱和社交关系图的新闻推荐;最后,分析了当前个性化新闻推荐所面临的挑战,探讨了如何解决个性化新闻推荐系统中数据稀疏性、模型可解释性、推荐结果多样性和新闻隐私保护等问题,并在未来研究方向中展望了更具体可操作的研究思路和方法。
孟祥福, 霍红锦, 张霄雁, 王琬淳, 朱金侠. 个性化新闻推荐方法研究综述[J]. 计算机科学与探索, 2023, 17(12): 2840-2860.
MENG Xiangfu, HUO Hongjin, ZHANG Xiaoyan, WANG Wanchun, ZHU Jinxia. Survey of Research on Personalized News Recommendation Approaches[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2840-2860.
[1] LI M M, WANG L C. A survey on personalized news recom-mendation technology[J]. IEEE Access, 2019, 7: 145861-145879. [2] DONG Y, LIU S, CHAI J P. Research of hybrid collaborative filtering algorithm based on news recommendation[C]//Pro-ceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Datong, Oct 15-17, 2016. Piscataway: IEEE, 2016: 898-902. [3] WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, Aug 21-24, 2011. New York: ACM, 2011: 448-456. [4] OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 1933-1942. [5] LIU J H, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//Proceedings of the 15th International Conference on Intelligent User Inter-faces, Hong Kong, China, Feb 7-10, 2010. New York: ACM, 2010: 31-40. [6] BANSAL T, DAS M, BHATTACHARYYA C. Content driven user profiling for comment-worthy recommendations of news and blog articles[C]//Proceedings of the 9th ACM Confe-rence on Recommender Systems, Vienna, Sep 16-20, 2015. New York: ACM, 2015: 195-202. [7] LU Z, DOU Z, LIAN J, et al. Content-based collaborative filtering for news topic recommendation[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 217-223. [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436. [9] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. [10] 余力, 杜启翰, 岳博妍, 等. 基于强化学习的推荐研究综述[J]. 计算机科学, 2021, 48(10): 1-18. YU L, DU Q H, YUE B Y, et al. Survey of reinforcement learning based recommender systems[J]. Computer Science, 2021, 48(10): 1-18. [11] 田萱, 丁琪, 廖子慧, 等. 基于深度学习的新闻推荐算法研究综述[J]. 计算机科学与探索, 2021, 15(6): 971-998. TIAN X, DING Q, LIAO Z H, et al. Survey on deep lear-ning based news recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. [12] 王绍卿, 李鑫鑫, 孙福振, 等. 个性化新闻推荐技术研究综述[J]. 计算机科学与探索, 2020, 14(1): 18-29. WANG S Q, LI X X, SUN F Z, et al. Survey of research on personalized news recommendation techniques[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 18-29. [13] 孟祥武, 陈诚, 张玉洁. 移动新闻推荐技术及其应用研究综述[J]. 计算机学报, 2016, 39(4): 685-703. MENG X W, CHEN C, ZHANG Y J. A survey of mobile news recommend techniques and applications[J]. Chinese Journal of Computers, 2016, 39(4): 685-703. [14] LIU R, PENG H, CHEN Y, et al. HyperNews: simultaneous news recommendation and active-time prediction via a double-task deep neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 11-17, 2020: 3487-3493. [15] 袁仁进, 陈刚. 顾及事件地理位置的新闻推荐方法研究[J]. 计算机科学, 2018, 45(S2): 462-467. YUAN R J, CHEN G. Research on news recommendation methods considering geographical location of news[J]. Computer Science, 2018, 45(S2): 462-467. [16] CHEN C, THOMAS L, MENG X, et al. Location-aware news recommendation using deep localized semantic analysis[C]//LNCS 10177: Proceedings of the 22nd International Conference on Database Systems for Advanced Applications, Suzhou, Mar 27-30, 2017. Cham: Springer, 2017: 507-524. [17] XU W, CHOW C Y, YIU M L, et al. MobiFeed: a location-aware news feed framework for moving users[J]. GeoInfor-matica, 2015, 19(3): 633-669. [18] SARAVANAPRIYA M, SENTHILKUMAR R, SAKTHEE SWARAN J. Multi-label convolution neural network for personalized news recommendation based on social media mining[J]. Journal of Scientific and Industrial Research, 2022, 81(7): 785-797. [19] ASHRAF M, TAHIR G A, ABRAR S. Personalized news recommendation based on multi-agent framework using social media preferences[C]//Proceedings of the 2018 International Conference on Smart Computing and Electronic Enterprise, Shah Alam, Jul 11-12, 2018. Piscataway: IEEE, 2018: 1-7. [20] YANG J, WAN J, WANG Y, et al. Social network-based news recommendation with knowledge graph[C]//Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, Chongqing, Nov 6-8, 2020. Piscataway: IEEE, 2020: 1255-1260. [21] MOREIRA G, JANNACH D, CUNHA A. Contextual hybrid session-based news recommendation with recurrent neural networks[J]. IEEE Access, 2019, 7: 169185-169203. [22] MENG L, SHI C. A context-aware interest drift network for session-based news recommendations[C]//Proceedings of the IEEE 6th International Conference on Computer and Commu-nications, Chengdu, Dec 11-14, 2020. Piscataway: IEEE, 2020: 1967-1971. [23] SHEU H S, LI S. Context-aware graph embedding for session-based news recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 657-662. [24] GUO N, FU Z P, ZHAO Q H. Multimodal news recommen-dation based on deep reinforcement learning[C]//Proceedings of the 2022 International Conference on Intelligent Compu-ting and Signal Processing, Xi??an, Apr 15-17, 2022. New York: IEEE, 2022: 279-284. [25] WU C, WU F, QI T, et al. MM-Rec: visiolinguistic model empowered multimodal news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2560-2564. [26] XUN J H, ZHANG S Y, ZHAO Z, et al. Why do we click: visual impression-aware news recommendation[C]//Proceedings of the 2021 ACM Multimedia Conference, Oct 20-24, 2021. New York: ACM, 2021: 3881-3890. [27] WU C H, WU F, QI T, et al. End-to-end learnable diversity-aware news recommendation[J]. arXiv:2204.00539, 2022. [28] WU CH, WU F, QI T, et al. SentiRec: sentiment diversity-aware neural news recommendation[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Associa-tion for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, Suzhou, Dec 4-7, 2020. Stroudsburg: ACL, 2020: 44-53. [29] QIN Z, ZHANG M. Research on news recommendation algorithm based on user interest and timeliness modeling[C]//Proceedings of the 2nd International Conference on Computing and Data Science, Stanford, Jan 28-30, 2021. New York: ACM, 2021: 1-6. [30] WANG J, CHEN Y, WANG Z, et al. Popularity-enhanced news recommendation with multi-view interest representation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 1949-1958. [31] QI T, WU F, WU C, et al. PP-Rec: news recommendation with personalized user interest and time-aware news popu-larity[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5457-5467. [32] ZHU Q N, ZHOU X F, SONG Z L, et al. DAN: deep atten-tion neural network for news recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5973-5980. [33] AN M X, WU F Z, WU C H, et al. Neural news recom-mendation with long- and short-term user representations[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 336-345. [34] MENG L K, SHI C Y, HAO S F, et al. DCAN: deep co-attention network by modeling user preference and news lifecycle for news recommendation[C]//Proceedings of the 5th International Conference on Big Data Technologies, Qingdao, Sep 23-25, 2022. New York: ACM, 2021: 100-114. [35] WU C H, WU F Z, GE S Y, et al. Neural news recommen-dation with multi-head self-attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6388-6393. [36] WU C H, WU F Z, AN M X, et al. NPA: neural news recom-mendation with personalized attention[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2576-2584. [37] WU C H, WU F Z, QI T, et al. Two birds with one stone: unified model learning for both recall and ranking in news recommendation[C]//Findings of the Association for Compu-tational Linguistics, Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 3474-3480. [38] WU C H, WU F Z, AN M X, et al. Neural news recom-mendation with attentive multi-view learning[C]//Proceedings of the 28th International Joint Conference on Artificial Inte-lligence, Macao, China, Aug 10-16, 2019: 3863-3869. [39] WU C H, WU F Z, QI T, et al. User modeling with click preference and reading satisfaction for news recommenda-tion[C]//Proceedings of the 29h International Joint Confe-rence on Artificial Intelligence, Yokohama, Jan 7-15, 2020: 3023-3029. [40] DEVLIN J, CHANG M W, LEE K. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North Ame-rican Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [41] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Annual Confe-rence on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. [42] WU C H, WU F Z, Q I T, et al. Empowering news recom-mendation with pre-trained language models[C]//Proceedings of the 44th International ACM SIGIR Conference on Rese-arch and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1652-1656. [43] JIA Q L, LI J J, ZHANG Q, et al. RMBERT: news recom-mendation via recurrent reasoning memory network over BERT[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1773-1777. [44] ZHANG Q, LI J J, JIA Q L, et al. UNBERT: user-news matching BERT for news recommendation[C]//Proceedings of the 30th International Joint Conference on Artificial Inte-lligence, Montreal, Aug 19-27, 2021: 3356-3362. [45] HUANG J S, HAN Z B, XU H Y, et al. Adapted transfor-mer network for news recommendation[J]. Neurocomputing, 2022, 469: 119-129. [46] BI Q W, LI J, SHANG L F, et al. MTRec: multi-task lear-ning over BERT for news recommendation[C]//Proceedings of the 60th Annual Meeting of the Association-for-Compu-tational-Linguistics, Ireland, May 22-27, 2022. Stroudsburg: ACL, 2022: 2663-2669. [47] ZHANG Q, JIA Q L, WANG C Y, et al. AMM: attentive multi-field matching for news recommendation[C]//Procee-dings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1588-1592. [48] KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation[C]//Proceedings of the Working Notes of CLEF 2017-Conference and Labs of the Evaluation Forum, Dublin, Sep 11-14, 2017: 1-19. [49] REN L, CHEN D H, MIAO Z X, et al. News recommendation model based on long-term and short-term interests[C]//Proceedings of the 5th International Conference on Big Data Technologies, Qingdao, Sep 23-25, 2022. New York: ACM, 2022: 183-189. [50] WU C H, WU F Z, AN M X, et al. Neural news recommen-dation with heterogeneous user behavior[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Con-ference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4873-4882. [51] WU C H, WU F Z, QI T, et al FeedRec: news feed recom-mendation with various user feedbacks[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 2088-2097. [52] WU C H, WU F Z, HUANG Y F, et al. Neural news recom-mendation with negative feedback[J]. CCF Transactions on Pervasive Computing and Interaction, 2020, 2(3): 178-188. [53] GONG S, ZHU K Q. Positive, negative and neutral: modeling implicit feedback in session-based news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1185-1195. [54] HU Y F, QIU Z P, WU X. Denoising neural network for news recommendation with positive and negative implicit feedback[C]//Findings of the Association for Computational Linguistics, Seattle, Jul 10-15, 2022. Stroudsburg: ACL, 2022: 2320-2329. [55] QI T, WU F Z, WU C H, et al. FUM: fine-grained and fast user modeling for news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1974-1978. [56] GE S, WU C, WU F. Graph enhanced representation learning for news recommendation[C]//Proceedings of the Web Con-ference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2863-2869. [57] HU L, XU S, LI C, et al. Graph neural news recommen-dation with unsupervised preference disentanglement[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4255-4264. [58] HU L, LI C, SHI C. Graph neural news recommendation with long-term and short-term interest modeling[J]. Infor-mation Processing and Management, 2020, 57(2): 102142. [59] JI Z, WU M, YANG H. Temporal sensitive heterogeneous graph neural network for news recommendation[J]. Future Generation Computer Systems, 2021, 125: 324-333. [60] WU C H, WU F Z, HUANG Y F, et al. User-as-Graph: user modeling with heterogeneous graph pooling for news recom-mendation[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021: 1624-1630. [61] MAO Z, LI J Y, WANG H, et al. DIGAT: modeling news recommendation with dual-graph interaction[C]//Findings of the Association for Computational Linguistics, Abu Dhabi, Dec 7-11, 2022. Stroudsburg: ACL, 2022: 6595-6607. [62] MA M, NA S, WANG H. The graph-based behavior-aware recommendation for interactive news[J]. Applied Intelligence, 2022, 52(2): 1913-1929. [63] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. [64] REN Y, WANG X, PANG G, et al. Dual attention network based on knowledge graph for news recommendation[C]//LNCS 12937: Proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, Nanjing, Jun 25-27, 2021.Cham: Springer, 2021: 364-375. [65] LEE D, OH B, SEO S. News recommendation with topic-enriched knowledge graphs[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 695-704. [66] SUN Y, YI F, ZENG C, et al. A hybrid approach to news recommendation based on knowledge graph and long short-term user preferences[C]//Proceedings of the 2021 IEEE International Conference on Services Computing, Chicago, Sep 5-10, 2021. Piscataway: IEEE, 2021: 165-173. [67] XU Y, CHEN B, ZHEN J, et al. NRKM: news recommenda-tion based on knowledge graph with multi-view learning[C]//Proceedings of the 3rd International Conference on Control, Robotics and Intelligent System, Aug 26-28, 2022. New York: ACM, 2022: 123-127. [68] QI T, WU F, WU C, et al. Personalized news recommen-dation with knowledge-aware interactive matching[C]//Pro-ceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 61-70. [69] QIU Z, HU Y, WU X. Graph neural news recommendation with user existing and potential interest modeling[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(5): 1-17. [70] TIAN Y, YANG Y, REN X, et al. Joint knowledge pruning and recurrent graph convolution for news recommendation[C]//Proceedings of the 44th International ACM SIGIR Con-ference on Research and Development in Information Ret-rieval, Jul 11-15, 2021. New York: ACM, 2021: 51-60. [71] ZHU P, CHENG D, LUO S, et al. Si-News: integrating social information for news recommendation with attention-based graph convolutional network[J]. Neurocomputing, 2022, 494: 33-42. [72] GULLA J A, ZHANG L, PENG L, et al. The Adressa dataset for news recommendation[C]//Proceedings of the 2017 Inter-national Conference on Web Intelligence, Leipzig, Aug 23-26, 2017. New York: ACM, 2017: 1042-1048. [73] LERMAN K, GHOSH R. Information Contagion: an empirical study of the spread of news on Digg and Twitter social networks[C]//Proceedings of the 4th International Conference on Weblogs and Social Media, Washington, May 23-26, 2010. Menlo Park: AAAI, 2010: 166-176. [74] KILLE B, HOPFGARTNER F, BRODT T, et al. The Plista dataset[C]//Proceedings of the 2013 International News Recom-mender Systems Workshop and Challenge, Hong Kong, China, Oct 13, 2013. New York: ACM, 2013: 16-23. [75] WU F Z, QIAO Y, CHEN J H, et al. MIND: a large-scale dataset for news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3597-3606. [76] GABRILOVICH E, DUMAIS S T, HORVITZ E. Newsjunkie: providing personalized news feeds via analysis of information novelty[C]//Proceedings of the 2004 International Conference on World Wide Web, New York, May 17-20, 2004. New York: ACM, 2004: 482-490. [77] ZHENG G, ZHANG F, ZHENG Z, et al. DRN: a deep rein-forcement learning framework for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 167-176. [78] WU C, WU F, WANG X, et al. Fairness-aware news recom-mendation with decomposed adversarial learning[C]//Pro-ceedings of the 35th AAAI Conference on Artificial Intelli-gence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 4462-4469. [79] WANG H W, ZHANG F Z, WANG J, et al. RippleNet: pro-pagating user preferences on the knowledge graph for recom-mender systems[C]//Proceedings of the 27th ACM Inter-national Conference on Information and Knowledge Mana-gement, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. [80] TAO Q, WU F Z, WU C H, et al. HieRec: hierarchical user interest modeling for personalized news recommendation[C]//Proceedings of the 59th Annual Meeting of the Asso-ciation for Computational Linguistics and the 11th Interna-tional Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5446-5456. [81] QI T, WU F, WU C, et al. Uni-FedRec: a unified privacy-preserving news recommendation framework for model trai-ning and online serving[C]//Findings of the Association for Computational Linguistics, Punta Cana, Nov 16-20, 2021. Stroudsburg: ACL, 2021: 1438-1448. [82] YI J, WU F, WU C, et al. Efficient-FedRec: efficient fede-rated learning framework for privacy-preserving news recom-mendation[C]//Proceedings of the 2021 Conference on Empi-rical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 2814-2824. |
[1] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[2] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[3] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[4] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[5] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[6] | 杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754. |
[7] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[8] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
[9] | 彭斌, 白静, 李文静, 郑虎, 马向宇. 面向图像分类的视觉Transformer研究进展[J]. 计算机科学与探索, 2024, 18(2): 320-344. |
[10] | 王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319. |
[11] | 高洁, 赵心馨, 于健, 徐天一, 潘丽, 杨珺, 喻梅, 李雪威. 结合密度图回归与检测的密集计数研究[J]. 计算机科学与探索, 2024, 18(1): 127-137. |
[12] | 王昆, 郭威, 王尊严, 韩文强. 赤足足迹识别研究综述[J]. 计算机科学与探索, 2024, 18(1): 44-57. |
[13] | 刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. |
[14] | 赵婷婷, 孙威, 陈亚瑞, 王嫄, 杨巨成. 潜在空间中深度强化学习方法研究综述[J]. 计算机科学与探索, 2023, 17(9): 2047-2074. |
[15] | 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||