[1] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[2] LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection[C]//Proceedings of the 2002 International Conference on Image Processing, Rochester, Sep 22-25, 2002. Piscataway: IEEE, 2002: 900-903.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2005: 886-893.
[4] CRISTIANINI N, SHAWE TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
[5] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the 13th International Conference on Machine Learning, Bari, Jul 3-6, 1996. San Francisco: Morgan Kaufmann, 1996: 148-156.
[6] LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 2/3: 18-22.
[7] NEUBECK A,VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Washington: IEEE Computer Society, 2006: 850-855.
[8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington:IEEE Computer Society, 2015: 1440-1448.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-12-15]. https://arxiv.org/abs/1804.02767.
[11] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2209.02976.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H-Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2023: 7464-7475.
[13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 7263-7271.
[14] BOCHKOVSKIY A,WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2004.10934.
[15] WANG C, YEH I, LIAO H. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2402.13616.
[16] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2304.00501.
[17] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275.
[18] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
[19] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[20] SIRISHA U, PRAVEEN S P, SRINIVASU P N, et al. Statistical analysis of design aspects of various YOLO-based deep learning models for object detection[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 126.
[21] 贾晓芬, 吴雪茹, 赵佰亭. 绝缘子自爆缺陷的轻量化检测网络DE-YOLO[J]. 电子测量与仪器学报, 2023, 37(5): 28-35.
JIA X F, WU X R, ZHAO B T. Lightweight detection network for insulator self-detonation defect DE-YOLO[J]. Journal of Electronic Measurement and Instrument, 2023, 37(5): 28-35.
[22] 李想, 特日根, 仪锋, 等. 针对全球储油罐检测的TCS-YOLO模型[J]. 光学精密工程, 2023, 31(2): 246-262.
LI X, TE R G, YI F, et al. TCS-YOLO model for global oil storage tank inspection[J]. Optics and Precision Engineering, 2023, 31(2): 246-262.
[23] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[24] 宁纪锋, 林靖雅, 杨蜀秦, 等. 基于改进YOLO v5s的奶山羊面部识别方法[J]. 农业机械学报, 2023, 54(4): 331-337.
NING J F, LIN J Y, YANG S Q, et al. Face recognition method of dairy goat based on improved YOLO v5s[J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(4): 331-337.
[25] 苏志威, 黄子涵, 邱发生, 等. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法[J]. 航空动力学报, 2024, 39(6): 20230414.
SU Z W, HUANG Z H, QIU F S, et al. Weld defect detection of aviation aluminum alloy based on improved YOLOv8[J]. Journal of Aerospace Power, 2024, 39(6): 20230414.
[26] 孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLOv5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208.
SUN J B, WANG L J, MA J H, et al. Photovoltaic module fault detection based on improved YOLOv5s algorithm[J]. Infrared Technology, 2023, 45(2): 202-208.
[27] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206.
[28] 杨断利, 王永胜, 陈辉, 等. 基于改进YOLO v6-tiny的蛋鸡啄羽行为识别与个体分类[J]. 农业机械学报, 2023, 54(5): 268-277.
YANG D L, WANG Y S, CHEN H, et al. Feather pecking abnormal behavior identification and individual classification method of laying hens based on improved YOLO v6-tiny[J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(5): 268-277.
[29] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[30] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9.
[31] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[32] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-12-15]. https://arxiv.org/abs/1409.1556.
[33] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[34] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning, Atlanta, Jun 16-21, 2013: 3.
[35] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 390-391.
[36] MISRA D. Mish: a self regularized non-monotonic activation function[EB/OL]. [2023-12-15]. https://arxiv.org/abs/1908.08681.
[37] GHIASI G, LIN T Y, LE Q V. Dropblock: a regularization method for convolutional networks[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 10750-10760.
[38] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6688-6697.
[39] LIN T-Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 2117-2125.
[40] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[41] WANG W, XIE E, SONG X, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8440-8449.
[42] EVERINGHAM M, ESLAMI S A, VAN GOOL L, et al. The Pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136.
[43] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2009: 248-255.
[44] KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale[J]. International Journal of Computer Vision, 2020, 128(7): 1956-1981.
[45] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755.
[46] XU X, JIANG Y, CHEN W, et al. Damo-YOLO: a report on real-time object detection design[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2211.15444.
[47] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems 36, New Orleans, Dec 10-16, 2023.
[48] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3974-3983.
[49] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514.
[50] 牛为华, 殷苗苗. 基于改进YOLO v5的道路小目标检测算法[J]. 传感技术学报, 2023, 36(1): 36-44.
NIU W H, YIN M M. Road small target detection algorithm based on improved YOLO v5[J]. Journal of Transduction Technology, 2023, 36(1): 36-44.
[51] 郭克友, 王苏东, 李雪, 等. 基于Dim Env-YOLO算法的昏暗场景车辆多目标检测[J]. 计算机工程, 2023, 49(3): 312-320.
GUO K Y, WANG S D, LI X, et al. Multi-target detection of vehicles in dim scenes based on Dim Env-YOLO algorithm[J]. Computer Engineering, 2023, 49(3): 312-320.
[52] 鲍文霞, 谢文杰, 胡根生, 等. 基于TPH-YOLO的无人机图像麦穗计数方法[J]. 农业工程学报, 2023, 39(1): 155-161.
BAO W X, XIE W J, HU G S, et al. Wheat ear counting method in UAV images based on TPH-YOLO[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(1): 155-161.
[53] 林文树, 张金生, 何乃磊. 基于改进YOLO v4的落叶松毛虫侵害树木实时检测方法[J]. 农业机械学报, 2023, 54(4): 304-312.
LIN W S, ZHANG J S, HE N L. Real-time detection method of dendrolimus superans-infested larix gmelinii trees based on improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 304-312.
[54] 郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464.
HAO P F, LIU L Q, GU R Y. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model[J]. Journal of Graphics, 2023, 44(3): 456-464.
[55] 盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118-2129.
SHENG S, DUAN X H, HU W K, et al. Dynamic-YOLOX: detection model for apple leaf disease in complex background[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2118-2129.
[56] 王春梅, 刘欢. YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[57] 聂源, 赖惠成, 高古学. 改进YOLOv7+Bytetrack的小目标检测与追踪[J]. 计算机工程与应用, 2024, 60(12): 189-202.
NIE Y, LAI H C, GAO G X. Improved small target detection and tracking with YOLOv7+Bytetrack[J]. Computer Engineering and Applications, 2024, 60(12): 189-202.
[58] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 1251-1258.
[59] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[60] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[61] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1580-1589.
[62] QIN Z, LI Z, ZHANG Z, et al. ThunderNet: towards real-time generic object detection on mobile devices[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6718-6727.
[63] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |