[1] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151.
[2] NICKERSON R S. Confirmation bias: a ubiquitous phenomenon in many guises[J]. Review of General Psychology, 1998, 2(2): 175-220.
[3] CINELLI M, DE FRANCISCI MORALES G, GALEAZZI A, et al. The echo chamber effect on social media[J]. Proceedings of the National Academy of Sciences of the USA, 2021, 118(9): e2023301118.
[4] SHU K, SLIVA A, WANG S H, et al. Fake news detection on social media: a data mining perspective[J]. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22-36.
[5] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029.
LIU H L, CHEN S H, CAO S J, et al. Survey of fake news detection with multi-model learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029.
[6] NEWMAN M L, PENNEBAKER J W, BERRY D S, et al. Lying words: predicting deception from linguistic styles[J]. Personality and Social Psychology Bulletin, 2003, 29(5): 665-675.
[7] SHRESTHA A, SPEZZANO F. Textual characteristics of news title and body to detect fake news: a reproducibility study[C]//Advances in Information Retrieval: the 43rd European Conference on IR Research. Cham: Springer, 2021: 120- 133.
[8] QIAN F, GONG C Y, SHARMA K, et al. Neural user response generator: fake news detection with collective user intelligence[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 3834-3840.
[9] DAI Y, SHOU L J, GONG M, et al. Graph fusion network for text classification[J]. Knowledge-Based Systems, 2022, 236: 107659.
[10] HAN Y, KARUNASEKERA S, LECKIE C. Graph neural networks with continual learning for fake news detection from social media[EB/OL]. [2024-09-14]. https://arxiv.org/abs/2007.03316.
[11] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2915-2921.
[12] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection[C]// Proceedings of the 5th IEEE International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47.
[13] SINGHAL S, KABRA A, SHARMA M, et al. SpotFake+: a multimodal framework for fake news detection via transfer learning (student abstract)[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(10): 13915-13916.
[14] ZHOU X Y, WU J D, ZAFARANI R. Similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining - the 24th Pacific-Asia Conference. Cham: Springer, 2020: 354-367.
[15] PENG L W, JIAN S L, LI D S, et al. MRML: multimodal rumor detection by deep metric learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[16] 王震宇, 朱学芳. 基于多模态Transformer的虚假新闻检测研究[J]. 情报学报, 2023, 42(12): 1477-1486.
WANG Z Y, ZHU X F. Research on fake news detection based on multimodal transformer[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(12): 1477-1486.
[17] DING K Z, WANG J L, LI J D, et al. Graph prototypical networks for few-shot learning on attributed networks[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 295-304.
[18] DING K Z, XU Z, TONG H H, et al. Data augmentation for deep graph learning: a survey[J]. ACM SIGKDD Explorations Newsletter, 2022, 24(2): 61-77.
[19] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1025-1035.
[20] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-09-14]. https://arxiv. org/abs/1710.10903.
[21] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032.
[22] SHU K, CUI L M, WANG S H, et al. dEFEND: explainable fake news detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 395-405.
[23] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489.
[24] CHENG L, GUO R C, SHU K, et al. Causal understanding of fake news dissemination on social media[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 148-157.
[25] MONTI F, FRASCA F, EYNARD D, et al. Fake news detection on social media using geometric deep learning[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1902.06673.
[26] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 549-556.
[27] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1609.02907.
[28] DOU Y T, SHU K, XIA C Y, et al. User preference-aware fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2051- 2055.
[29] SHU K, MAHUDESWARAN D, WANG S H, et al. FakeNewsNet: a data repository with news content, social context, and spatiotemporal information for studying fake news on social media[J]. Big Data, 2020, 8(3): 171-188.
[30] REN Y X, ZHANG J W. Fake news detection on news-oriented heterogeneous information networks through hierarchical graph attention[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8.
[31] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565.
[32] BAI S, ZHANG F H, TORR P H S. Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637.
[33] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification[EB/OL]. [2024-09-15]. https://arxiv.org/abs/2011.00387.
[34] WU J Y, HOOI B. DECOR: degree-corrected social graph refinement for fake news detection[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2582-2593.
[35] ZHOU D Y, HUANG J Y, SCH?LKOPF B. Learning with hypergraphs: clustering, classification, and embedding[C]//Advances in Neural Information Processing Systems 19, 2007: 1601-1608.
[36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1810.04805.
[37] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2735-2745.
[38] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 3465-3476.
[39] GUO Q J, KANG Z, TIAN L, et al. TieFake: title-text similarity and emotion-aware fake news detection[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-7.
[40] JEONG U, DING K Z, CHENG L, et al. Nothing stands alone: relational fake news detection with hypergraph neural networks[C]//Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2023: 596-605.
[41] HONNIBAL M, MONTANI I. spaCy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing[EB/OL]. [2024-09-15]. https://github.com/explosion/spaCy.
[42] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 3818-3824. |