[1] LIU H, ZHENG L, JIANG L, et al. Forty-year water body changes in Poyang Lake and the ecological impacts based on Landsat and HJ-1 A/B observations[J]. Journal of Hydrology, 2020, 589: 125161.
[2] CHEN Y, FAN R S, YANG X C, et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 2018, 10(5): 585.
[3] MCFEETERS S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
[4] XU H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. National Remote Sensing Bulletin, 2005(5): 589-595.
[5] ZHU Y, SUN L J, ZHANG C Y. Summary of water body extraction methods based on ZY-3 satellite[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012200.
[6] 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4): 79-84.
DUAN Q Y, MENG L K, FAN Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land & Resources, 2015, 27(4): 79-84.
[7] 郜燕芳, 李俊明, 刘东伟, 等. 基于随机森林模型的城市不透水面提取研究: 以呼和浩特市为例[J]. 冰川冻土, 2018, 40(4): 828-836.
GAO Y F, LI J M, LIU D W, et al. Research on extraction of urban impervious surface based on random forest model: a case study in Hohhot[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 828-836.
[8] JI L Y, GONG P, WANG J, et al. Construction of the 500-m resolution daily global surface water change database (2001-2016)[J]. Water Resources Research, 2018, 54(12): 10270-10292.
[9] WANG Z B, GAO X, ZHANG Y N, et al. MSLWENet: a novel deep learning network for lake water body extraction of google remote sensing images[J]. Remote Sensing, 2020, 12(24): 4140.
[10] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[11] FENG W Q, SUI H G, HUANG W M, et al. Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 618-622.
[12] LI J J, WANG C, XU L, et al. Multitemporal water extraction of Dongting Lake and Poyang Lake based on an automatic water extraction and dynamic monitoring framework[J]. Remote Sensing, 2021, 13(5): 865.
[13] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[14] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[15] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2024-02-16]. https://arxiv.org/abs/1706.05587.
[16] WANG Z M, WANG J S, YANG K, et al. Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+[J]. Computers & Geosciences, 2022, 158: 104969.
[17] 王一中, 胡亚琦, 吴小所, 等. 基于改进Swin Transformer的遥感图像语义分割方法[J]. 计算机工程与应用, 2024, 60(11): 194-203.
WANG Y Z, HU Y Q, WU X S, et al. Semantic segmentation method for remote sensing images based on improved Swin Transformer[J]. Computer Engineering and Applications, 2024, 60(11): 194-203.
[18] ZHAO H S, ZHANG Y, LIU S, et al. PSANet: point-wise spatial attention network for scene parsing[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 270-286.
[19] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[20] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149.
[21] LIU M, LIU J P, HU H. A novel deep learning network model for extracting lake water bodies from remote sensing images[J]. Applied Sciences, 2024, 14(4): 1344.
[22] DAI X, XIA M, WENG L G, et al. Multiscale location attention network for building and water segmentation of remote sensing image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5609519.
[23] SONG Y J, RUI X P, LI J J. AEDNet: an attention-based encoder-decoder network for urban water extraction from high spatial resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17: 1286-1298.
[24] CHEN J, XIA M, WANG D H, et al. Double branch parallel network for segmentation of buildings and waters in remote sensing images[J]. Remote Sensing, 2023, 15(6): 1536.
[25] LI J K, LI G G, XIE T, et al. MST-UNet: a modified Swin Transformer for water bodies?? mapping using Sentinel-2 images[J]. Journal of Applied Remote Sensing, 2023, 17: 026507.
[26] ZHANG Q, HU X, XIAO Y. A novel hybrid model based on CNN and multi-scale transformer for extracting water bodies from high resolution remote sensing images[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10: 889-894.
[27] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11966-11976.
[28] WANG J J, ZHENG Z, MA A, et al. LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation[EB/OL]. [2024-02-16]. https://arxiv.org/abs/2110.08733.
[29] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[30] CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1971-1980.
[31] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995.
[32] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[33] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[34] WANG Z H, LI J, TAN Z L, et al. Swin-UperNet: a semantic segmentation model for mangroves and spartina alterniflora loisel based on UperNet[J]. Electronics, 2023, 12(5): 1111.
[35] WANG R Z, JIANG H Y, LI Y F. UPerNet with ConvNeXt for semantic segmentation[C]//Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information. Piscataway: IEEE, 2023: 764-769.
[36] WU H L, HUANG P, ZHANG M, et al. CMTFNet: CNN and multiscale transformer fusion network for remote-sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 2004612.
[37] LI R, ZHENG S Y, DUAN C X, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8009205.
[38] DANG B, LI Y S. MSResNet: multiscale residual network via self-supervised learning for water-body detection in remote sensing imagery[J]. Remote Sensing, 2021, 13(16): 3122. |