[1] 武曌晗, 荣学文, 范永. 导盲机器人研究现状综述[J]. 计算机工程与应用, 2020, 56(14): 1-13.
WU Z H, RONG X W, FAN Y. Survey on research status of blind-guiding robots[J]. Computer Engineering and Applications, 2020, 56(14): 1-13.
[2] BEN ATITALLAH A, SAID Y, BEN ATITALLAH M A, et al. An effective obstacle detection system using deep learning advantages to aid blind and visually impaired navigation[J]. Ain Shams Engineering Journal, 2024, 15(2): 102387.
[3] 刘源, 张荣芬, 刘宇红, 等. 基于CE-YOLOX的导盲系统障碍物检测方法[J]. 液晶与显示, 2023, 38(9): 1281-1292.
LIU Y, ZHANG R F, LIU Y H, et al. Obstacle detection method for guide system based on CE-YOLOX[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(9): 1281-1292.
[4] VIOLA P, JONES M. Robust real-time face detection[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 747.
[5] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001.
[6] WANG X Y, YANG M, ZHU S H, et al. Regionlets for generic object detection[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 17-24.
[7] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[9] ANTUN V, RENNA F, POON C, et al. On instabilities of deep learning in image reconstruction and the potential costs of AI[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30088-30095.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[12] FARHADI A, REDMON J. YOLOv3: an incremental improvement[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1804. 02767.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1-17.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[15] 古佳欣, 陈高华, 张春美. YOLOv8-DEL:基于改进YOLOv8n的实时车辆检测算法研究[J]. 计算机工程与应用, 2025, 61(1): 142-152.
GU J X, CHEN G H, ZHANG C M. YOLOv8-DEL: research on real-time vehicle detection algorithm based on improved YOLOv8n[J]. Computer Engineering and Applications, 2025, 61(1): 142-152.
[16] 张小艳, 王苗. 改进的YOLOv8n轻量化景区行人检测方法研究[J]. 计算机工程与应用, 2025, 61(2): 84-96.
ZHANG X Y, WANG M. Research on improved YOLOv8n light-weight pedestrian detection method in scenic spots[J]. Computer Engineering and Applications, 2025, 61(2): 84-96.
[17] 赵磊, 李栋. PMM-YOLO: 多尺度特征融合的交通标志检测算法[J]. 计算机工程与应用, 2025, 61(4): 262-271.
ZHAO L, LI D. PMM-YOLO: traffic sign detection algorithm with multi-scale feature fusion[J]. Computer Engineering and Applications, 2025, 61(4): 262-271.
[18] LINDEBERG T. Scale-space theory in computer vision[M]. Boston: Springer US, 1994.
[19] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[20] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatio-temporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4489-4497.
[21] PARK H J, KANG J W, KIM B G. ssFPN: scale sequence (S2) feature-based feature pyramid network for object detection[J]. Sensors, 2023, 23(9): 4432.
[22] RUKUNDO O, CAO H Q. Nearest neighbor value interpolation[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1211.1768.
[23] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[24] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2024-09-15]. https://arxiv.org/abs/2301.10051.
[25] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[EB/OL]. [2024-09-15]. https://arxiv.org/abs/2401.10525.
[26] SHU C Y, LIU Y F, GAO J F, et al. Channel-wise knowledge distillation for dense prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 5291-5300.
[27] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[28] WAN D H, LU R S, SHEN S Y, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[29] XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4784-4793.
[30] DA M, JIANG L, TAO Y F, et al. Infrared target detection algorithm based on multipath coordinate attention mechanism[J]. Measurement Science and Technology, 2025, 36(1): 015208.
[31] HUANG H J, CHEN Z G, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784.
[32] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[33] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |