
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (7): 1699-1728.DOI: 10.3778/j.issn.1673-9418.2411036
周开军,廖婷,谭平,史长发
出版日期:2025-07-01
发布日期:2025-06-30
ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa
Online:2025-07-01
Published:2025-06-30
摘要: 图像压缩是图像处理与通信领域的一项关键技术,一直以来是学术界的研究热点。对图像压缩的基本概念和原理进行了系统梳理,区分了无损压缩与有损压缩,介绍了各类编码技术。在传统压缩方法方面,对基于离散余弦变换、离散小波变换、矢量量化和分形压缩的技术进行了全面分析,探讨了它们的优缺点及适用范围。这些方法虽在图像压缩领域发挥了重要作用,但随着技术发展,其局限性也逐渐显现。针对深度学习领域的图像压缩技术,重点研究了卷积神经网络、循环神经网络、生成对抗网络以及近年来兴起的Transformer和扩散模型等方法在图像压缩中的应用。这些方法通过自动学习图像特征,实现了更高效的压缩和图像重构。在性能评估方面,分析了压缩比、峰值信噪比和结构相似性指数等关键指标,并探讨了图像压缩技术在不同领域的应用前景和面临的挑战。对未来图像压缩技术的发展方向和研究趋势进行了展望,指出随着深度学习与新兴技术的结合,智能图像压缩将成为未来的重要发展方向。
周开军, 廖婷, 谭平, 史长发. 图像压缩技术研究综述[J]. 计算机科学与探索, 2025, 19(7): 1699-1728.
ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728.
| [1] SANTOSO F. Uniform and non-uniform optimum scalar quantizers performances: a comparative study[J]. ITB Journal of Information and Communication Technology, 2008, 2(1): 1-23. [2] RAID A M, KHEDR W M, EL-DOSUKY M A, et al. JPEG image compression using discrete cosine transform-a survey[EB/OL]. [2024-09-13]. https://arxiv.org/abs/1405.6147. [3] GUPTA M, GARG A K. Analysis of image compression algorithm using DCT[J]. International Journal of Engineering Research and Applications, 2012, 2(1): 515-521. [4] DEEPTHI K, RAMPRAKASH R. Design and implementation of JPEG image compression and decompression[J]. International Journal of Innovations in Engineering and Technology, 2013, 2(1): 90-98. [5] HUSSAIN A A, AL-KHAFAJI G K, SIDDEQ M M. Developed JPEG algorithm applied in image compression[J]. IOP Conference Series: Materials Science and Engineering, 2020, 928(3): 032006. [6] CHOUHAN A, NIGAM M J. Double compression of JPEG image using DCT with estimated quality factor[C]//Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems. Piscataway: IEEE, 2016: 1-3. [7] ALAM L, DHAR P K, RASHIDUL HASAN M A F M, et al. An improved JPEG image compression algorithm by modifying luminance quantization table[J]. International Journal of Computer Science and Network Security, 2017, 17(1): 200- 208. [8] MIKLóS P, ?ELJEN T, TATJANA L T. Analysis and improvement of JPEG compression performance using custom quantization and block boundary classifications[J]. Acta Polytechnica Hungarica, 2020, 17(6): 171-191. [9] SINGH S. An algorithm for improving the quality of compacted JPEG image by minimizes the blocking artifacts[EB/OL]. [2024-09-13]. https://arxiv.org/abs/1208.1983. [10] HASAN M, NUR K M, NOOR T B. Computational complexity reduction of JPEG images[J]. International Journal of Scientific & Technology Research, 2012, 1(4): 72-75. [11] AKMAN A, CEKLI S. Efficient 2D DCT architecture based on approximate compressors for image compression with HEVC intra-prediction[J]. Journal of Real-Time Image Processing, 2023, 20(2): 22. [12] MEFOUED A, KOUADRIA N, HARIZE S, et al. Improving image encoding quality with a low-complexity DCT approximation using 14 additions[J]. Journal of Real-Time Image Processing, 2023, 20(3): 58. [13] WANG R X, LU W, LI J X, et al. Digital image splicing detection based on Markov features in QDCT and QWT domain[M]//Digital forensics and forensic investigations: breakthroughs in research and practice. Hershey: IGI Global, 2020: 61-79. [14] XIAO W D, WAN N B, HONG A L, et al. A fast JPEG image compression algorithm based on DCT[C]//Proceedings of the 2020 IEEE International Conference on Smart Cloud. Piscataway: IEEE, 2020: 106-110. [15] INCE I F, BULUT F, KILIC I, et al. Low dynamic range discrete cosine transform (LDR-DCT) for high-performance JPEG image compression[J]. The Visual Computer, 2022, 38(5): 1845-1870. [16] GARG G, KUMAR R. Adaptive block size selection in a hybrid image compression algorithm employing the DCT and SVD[J]. International Journal on Smart Sensing and Intelligent Systems, 2024,17(1). [17] CANDRA R, MADENDA S, SUDIRO S A, et al. The implementation of an efficient zigzag scan[J]. Journal of Telecommunication, Electronic and Computer Engineering, 2017, 9(2): 95-98. [18] DHAWAN S. A review of image compression and comparison of its algorithms[J]. International Journal of Electronics & Communication Technology, 2011, 2(1): 22-26. [19] USEVITCH B E. A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000[J]. IEEE Signal Processing Magazine, 2001, 18(5): 22-35. [20] YANG J, BHATTACHARYA K. Combining image compression with digital image correlation[J]. Experimental Mechanics, 2019, 59(5): 629-642. [21] RAO V S, PANAKALA R K, PULLAKURA R K. Implementation of a 2D-DWT system architecture for JPEG2000 using MATLAB and DSP[C]//Proceedings of the 2016 International Conference on Computation System and Information Technology for Sustainable Solutions. Piscataway: IEEE, 2016: 86-90. [22] NAHAR A K. A compression original image based on the DDWT technique and enhancement SNR[J]. International Journal of Engineering Technology and Sciences, 2018, 5(3): 73-89. [23] RANJAN R, KUMAR P. An efficient compression of gray scale images using wavelet transform[J]. Wireless Personal Communications, 2022, 126(4): 3195-3210. [24] ZANATY E A, IBRAHIM S M. High efficient Haar wavelets for medical image compression[C]//Proceedings of the 2019 International Conference on Advanced Intelligent Systems and Informatics. Cham: Springer, 2019: 547-557. [25] MISHRA D, SINGH S K, SINGH R K. Wavelet-based deep auto encoder-decoder (WDAED)-based image compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(4): 1452-1462. [26] RAJAN P V S, FRED A L. Efficient oppositional based optimal Harr wavelet for compound image compression using MHE[J]. Biomedical Research, 2018, 29(10): 2169-2178. [27] BORRA S, PANAKALA R K, KUMAR P. VLSI implementation of image fusion using DWT-PCA algorithm with maximum selection rule[J]. International Journal of Intelligent Engineering and Systems, 2019, 12(5): 1-11. [28] NANDEESHA R, SOMASHEKAR K. Content-based image compression using hybrid discrete wavelet transform with block vector quantization[J]. International Journal of Intelligent Systems and Applications in Engineering, 2023, 11: 19-37. [29] RANJAN R, KUMAR P. An improved image compression algorithm using 2D DWT and PCA with canonical Huffman encoding[J]. Entropy, 2023, 25(10): 1382. [30] KHODADADI R, ARDESHIR G, GRAILU H. Compression of face images using meta-heuristic algorithms based on curvelet transform with variable bit allocation[J]. Multimedia Systems, 2023, 29(6): 3721-3744. [31] ZANATY E A, IBRAHIM S M. Medical image compression based on combining region growing and wavelet transform[J]. International Journal of Medical Imaging, 2019, 7(3): 57. [32] XIANG S, LIANG Q K, FANG L Y. Discrete wavelet transform-based Gaussian mixture model for remote sensing image compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3000112. [33] SAHIN U B, KAMISLI F. Image compression with learned lifting-based DWT and learned tree-based entropy models[J]. Multimedia Systems, 2023, 29(6): 3369-3384. [34] PAL H S, KUMAR A, VISHWAKARMA A, et al. A new automated compression technique for 2D electrocardiogram signals using discrete wavelet transform[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108123. [35] DONG C H, MA H C, ZHANG H T, et al. Wavelet-like transform-based technology in response to the call for proposals on neural network-based image coding[EB/OL]. [2024- 09-13]. https://arxiv.org/abs/2403.05937. [36] MATHEW R, NAMAN A T, LI Y, et al. JPEG 2000 extensions for scalable coding of discontinuous media[J]. IEEE Transactions on Image Processing, 2023, 32: 3092-3107. [37] MADHAVEE LATHA P, ANNIS FATHIMA A. Collective compression of images using averaging and transform coding [J]. Measurement, 2019, 135: 795-805. [38] XIANG S, LIANG Q K. Remote sensing image compression based on high-frequency and low-frequency components[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5604715. [39] CHOWDHURY R S, JANA J, TRIPATHI S, et al. Improved DWT and IDWT architectures for image compression[J]. Microprocessors and Microsystems, 2024, 104: 104990. [40] LINDE Y, BUZO A, GRAY R. An algorithm for vector quantizer design[J]. IEEE Transactions on Communications, 1980, 28(1): 84-95. [41] PATANé G, RUSSO M. The enhanced LBG algorithm[J]. Neural Networks, 2001, 14(9): 1219-1237. [42] HUANG B, XIE L B. An improved LBG algorithm for image vector quantization[C]//Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology. Piscataway: IEEE, 2010: 467-471. [43] YANG S Y, WU R X, WANG M, et al. Evolutionary clustering based vector quantization and SPIHT coding for image compression[J]. Pattern Recognition Letters, 2010, 31(13): 1773- 1780. [44] TSOLAKIS D, TSEKOURAS G E, NIROS A D, et al. On the systematic development of fast fuzzy vector quantization for grayscale image compression[J]. Neural Networks, 2012, 36: 83-96. [45] HOSSEINI S M, NAGHSH-NILCHI A R. Medical ultrasound image compression using contextual vector quantization[J]. Computers in Biology and Medicine, 2012, 42(7): 743-750. [46] NAG S. Vector quantization using the improved differential evolution algorithm for image compression[J]. Genetic Programming and Evolvable Machines, 2019, 20(2): 187-212. [47] BALLé J, CHOU P A, MINNEN D, et al. Nonlinear transform coding[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(2): 339-353. [48] CHAVAN P P, RANI B S, MURUGAN M, et al. An image compression model via adaptive vector quantization: hybrid optimization algorithm[J]. The Imaging Science Journal, 2020, 68: 259-277. [49] XU S Y, CHANG C C, LIU Y J. A novel image compression technology based on vector quantisation and linear regression prediction[J]. Connection Science, 2021, 33(2): 219- 236. [50] DANDAWATE Y H, JOSHI M A, UMRANI S M. Performance comparision of color image compression based on enhanced vector quantizer designed using different color spaces[C]//Proceedings of the 2007 International Conference on Intelligent and Advanced Systems. Piscataway: IEEE, 2007: 626-630. [51] MATSUMOTO H, SASAZAKI K, SUZUKI Y. Color image compression with vector quantization[C]//Proceedings of the 2008 IEEE Conference on Soft Computing in Industrial Applications. Piscataway: IEEE, 2008: 84-88. [52] MOHANTA G, MOHANTA H C. Image compression using different vector quantization algorithms and its comparison[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8(9): 3459-3488. [53] CHAVAN P P, RANI B S, MURUGAN M, et al. A novel image compression model by adaptive vector quantization: modified rider optimization algorithm[J]. Sādhanā, 2020, 45(1): 232. [54] RAHEBI J. Vector quantization using whale optimization algorithm for digital image compression[J]. Multimedia Tools and Applications, 2022, 81(14): 20077-20103. [55] ALKHALDI N A, ALSEDAIS R A A, HALAWANI H T, et al. Manta ray foraging optimization with vector quantization based microarray image compression technique[J]. Computational Intelligence and Neuroscience, 2022: 7140552. [56] ZHANG T C, WENG S W, WU Z J, et al. Adaptive encoding based lossless data hiding method for VQ compressed images using tabu search[J]. Information Sciences, 2022, 602: 128-142. [57] KILIC I, CETIN M. Improved adolescent identity search algorithm for block-based image compression[J]. Expert Systems with Applications, 2024, 237: 121715. [58] FISHER Y. Fractal image compression[J]. Fractals, 1994, 2(3): 347-361. [59] JOSHI M, AGARWAL A K, GUPTA B. Fractal image compression and its techniques: a review[M]//Soft computing: theories and applications. Singapore: Springer, 2019: 235-243. [60] JACQUIN A E. Fractal image coding: a review[J]. Proceedings of the IEEE, 1993, 81(10): 1451-1465. [61] LI S P, XIA L. Non-search fractal image compression algorithm research[C]//Proceedings of the 26th Chinese Control and Decision Conference. Piscataway: IEEE, 2014: 4387-4391. [62] KUMARBISWAS A, KARMAKAR S, SHARMA S, et al. Performance of fractal image compression for medical images: a comprehensive literature review[J]. International Journal of Applied Information Systems, 2015, 8(4): 14-24. [63] LU J, YE Z X, ZOU Y R. Huber fractal image coding based on a fitting plane[J]. IEEE Transactions on Image Processing, 2013, 22(1): 134-145. [64] GAO H, ZENG W, CHEN J, et al. An improved fast fractal image compression coding method[J]. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 2016, 39(9): 241-247. [65] WANG J J, CHEN P, XI B, et al. Fast sparse fractal image compression[J]. PLoS One, 2017, 12(9): e0184408. [66] ROY S K, KUMAR S, CHANDA B, et al. Fractal image compression using upper bound on scaling parameter[J]. Chaos, Solitons & Fractals, 2018, 106: 16-22. [67] PHADATARE P, CHAVAN P. Implementation of DCT and fractal compression technique[C]//Proceedings of the 2021 5th International Conference on Electronics, Communication and Aerospace Technology. Piscataway: IEEE, 2021: 83-87. [68] GUPTA R, MEHROTRA D, TYAGI R K. Computational complexity of fractal image compression algorithm[J]. IET Image Processing, 2020, 14(17): 4425-4434. [69] LIU S, BAI W L, LIU G C, et al. Parallel fractal compression method for big video data[J]. Complexity, 2018(1): 2016976. [70] SVYNCHUK O, BARABASH O, NIKODEM J, et al. Image compression using fractal functions[J]. Fractal and Fractional, 2021, 5(2): 31. [71] HERNANDEZ-LOPEZ F J, MU?IZ-PéREZ O. Parallel fractal image compression using quadtree partition with task and dynamic parallelism[J]. Journal of Real-Time Image Processing, 2022, 19(2): 391-402. [72] LIU X D, TONG X J, ZHANG M, et al. Image compression and encryption algorithm based on uniform non-degeneracy chaotic system and fractal coding[J]. Nonlinear Dynamics, 2023, 111(9): 8771-8798. [73] ABOOD B S Z, AKKAR H A R, AL-SAFI A S. Fast full-search algorithm of fractal image compression for acceleration image processing[J]. Science Journal of University of Zakho, 2023, 11(1): 117-124. [74] WANG Q, JIN G H, BI S. Adaptively hybrid fractal image coding[J]. IET Image Processing, 2024, 18(7): 1745-1758. [75] BREESAM A M, HUSSEIN Y M, MOHAMMED M J. Fractal compression of digital image processing[C]//Proceedings of the 2024 AIP Conference Proceedings, 2024: 040010. [76] ALOYSIUS N, GEETHA M. A review on deep convolutional neural networks[C]//Proceedings of the 2017 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2017: 588-592. [77] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. [78] GUI J, SUN Z N, WEN Y G, et al. A review on generative adversarial networks: algorithms, theory, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3313-3332. [79] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [80] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851. [81] BALLé J, LAPARRA V, SIMONCELLI E P. End-to-end optimized image compression[EB/OL]. [2024-09-16]. https:// arxiv.org/abs/1611.01704. [82] BALLé J, MINNEN D, SINGH S, et al. Variational image compression with a scale hyperprior[EB/OL]. [2024-09-16]. https://arxiv.org/abs/1802.01436. [83] ZHOU L, CAI C, GAO Y, et al. Variational autoencoder for low bit-rate image compression[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2617-2620. [84] LIU H, CHEN T, SHEN Q, et al. Deep image compression via end-to-end learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2575-2578. [85] SUN M D, HE X H, XIONG S H, et al. Reduction of JPEG compression artifacts based on DCT coefficients prediction[J]. Neurocomputing, 2020, 384: 335-345. [86] MENTZER F, AGUSTSSON E, TSCHANNEN M, et al. Practical full resolution learned lossless image compression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10621-10630. [87] LIU H, CHEN T, SHEN Q, et al. Deep image compression via end-to-end learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2575-2578. [88] ZHANG X, WU X L. Ultra high fidelity deep image decompression with l∞-constrained compression[J]. IEEE Transactions on Image Processing, 2021, 30: 963-975. [89] MA H C, LIU D, YAN N, et al. End-to-end optimized versatile image compression with wavelet-like transform[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3): 1247-1263. [90] AYZIK S, AVIDAN S. Deep image compression using decoder side information[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 699- 714. [91] LEE J, CHO S, KIM M. An end-to-end joint learning scheme of image compression and quality enhancement with improved entropy minimization[EB/OL]. [2024-09-16]. https:// arxiv.org/abs/1912.12817. [92] MINNEN D, BALLé J, TODERICI G D. Joint autoregressive and hierarchical priors for learned image compression[C]//Advances in Neural Information Processing Systems 31, 2018. [93] AKUTSU H, NARUKO T. End-to-end learned ROI image compression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019. [94] LI M, MA K D, YOU J, et al. Efficient and effective context- based convolutional entropy modeling for image compression[J]. IEEE Transactions on Image Processing, 2020, 29: 5900-5911. [95] LI M, ZHANG K, LI J X, et al. Learning context-based nonlocal entropy modeling for image compression[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(3): 1132-1145. [96] DJELOUAH J, SCHROERS C. Content adaptive optimization for neural image compression[C]//Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019. [97] CAI C L, CHEN L, ZHANG X Y, et al. End-to-end optimized ROI image compression[J]. IEEE Transactions on Image Processing, 2019, 29: 3442-3457. [98] CHEN T, LIU H J, MA Z, et al. End-to-end learnt image compression via non-local attention optimization and improved context modeling[J]. IEEE Transactions on Image Processing, 2021, 30: 3179-3191. [99] YAN N, LIU D, LI H Q, et al. Semantically scalable image coding with compression of feature maps[C]//Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 3114-3118. [100] CHEN Z X, HE X H, REN C, et al. Enhanced separable convolution network for lightweight JPEG compression artifacts reduction[J]. IEEE Signal Processing Letters, 2021, 28: 1280-1284. [101] BAO Y T, TAO Y W, QIAN P J. Image compression based on hybrid domain attention and postprocessing enhancement[J]. Computational Intelligence and Neuroscience, 2022(1): 4926124. [102] LIU S, HUANG Y C, YANG H X, et al. End-to-end image compression method based on perception metric[J]. Signal, Image and Video Processing, 2022, 16(7): 1803-1810. [103] LEI Z Y, DUAN P, HONG X M, et al. Progressive deep image compression for hybrid contexts of image classification and reconstruction[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 72-89. [104] PARK J, LEE J, KIM M. COMPASS: high-efficiency deep image compression with arbitrary-scale spatial scalability[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12780-12789. [105] KAMISLI F. Learned lossless image compression through interpolation with low complexity[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7832-7841. [106] ZHANG P P, WANG S Q, WANG M, et al. Rethinking semantic image compression: scalable representation with cross-modality transfer[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 4441-4445. [107] LI M Y, SHEN L Q, HUA X, et al. EUICN: an efficient underwater image compression network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(7): 6474-6488. [108] FU H S, LIANG F, LIN J P, et al. Learned image compression with Gaussian-Laplacian-logistic mixture model and concatenated residual modules[J]. IEEE Transactions on Image Processing, 2023, 32: 2063-2076. [109] FENG Y L, ZHANG Y Z, ZHOU Z, et al. Memristor-based storage system with convolutional autoencoder-based image compression network[J]. Nature Communications, 2024, 15: 1132. [110] GUERIN N D, DA SILVA R C, MACCHIAVELLO B. Learning-based image compression with parameter-adaptive rate-constrained loss[J]. IEEE Signal Processing Letters, 2024, 31: 1099-1103. [111] KOYUNCU A B, JIA P Q, BOEV A, et al. Efficient contextformer: spatio-channel window attention for fast context modeling in learned image compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7498-7511. [112] LI B, LI Y J, LUO J C, et al. Learned image compression via neighborhood-based attention optimization and context modeling with multi-scale guiding[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107596. [113] WU C H, WU Q B, MA R, et al. Continual cross-domain image compression via entropy prior guided knowledge distillation and scalable decoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(9): 8080-8092. [114] TODERICI G, VINCENT D, JOHNSTON N, et al. Full resolution image compression with recurrent neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5435-5443. [115] HU Y Y, YANG W H, LI M D, et al. Progressive spatial recurrent neural network for intra prediction[J]. IEEE Transactions on Multimedia, 2019, 21(12): 3024-3037. [116] JOHNSTON N, VINCENT D, MINNEN D, et al. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4385-4393. [117] COVELL M, JOHNSTON N, MINNEN D, et al. Target-quality image compression with recurrent, convolutional neural networks[EB/OL]. [2024-09-16]. https://arxiv.org/abs/ 1705.06687. [118] PUNNAPPURATH A, BROWN M S. Learning raw image reconstruction-aware deep image compressors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4): 1013-1019. [119] SUN H M, CHENG Z X, TAKEUCHI M, et al. End-to-end learned image compression with fixed point weight quantization[C]//Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 3359-3363. [120] WANG C, HAN Y F, WANG W D. An end-to-end deep learning image compression framework based on semantic analysis[J]. Applied Sciences, 2019, 9(17): 3580. [121] WEBER M, RENGGLI C, GRABNER H, et al. Lossy image compression with recurrent neural networks: from human perceived visual quality to classification accuracy[EB/OL]. [2024-09-16]. https://arxiv.org/abs/1910.03472. [122] ISLAM K, DANG L M, LEE S J, et al. Image compression with recurrent neural network and generalized divisive normalization[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1875-1879. [123] CHENG Z X, SUN H M, TAKEUCHI M, et al. Learned lossless image compression with a hyperprior and discretized Gaussian mixture likelihoods[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2158-2162. [124] SCHIOPU I, MUNTEANU A. Deep-learning-based lossless image coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 1829-1842. [125] KIM S H, PARK J H, KO J H. Target-dependent scalable image compression using a reconfigurable recurrent neural network[J]. IEEE Access, 2021, 9: 119418-119429. [126] LI J F, LIU X Y, GAO Y Q, et al. BARRN: a blind image compression artifact reduction network for industrial IoT systems[J]. IEEE Transactions on Industrial Informatics, 2023, 19(9): 9479-9490. [127] CHEN Q H, CHEN J T. Streaming lossless volumetric compression of medical images using gated recurrent convolutional neural network[EB/OL]. [2024-09-16]. https://arxiv.org/abs/2311.16200. [128] IKUTA M, ZHANG J. A deep convolutional gated recurrent unit for CT image reconstruction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10612-10625. [129] MURALIDHARAN P, SAI B G, MUKUNDA K, et al. Recurrent neural network-based lossless data compression[C]//Proceedings of the 2024 International Conference on Intelligent Systems for Cybersecurity. Piscataway: IEEE, 2024: 1-5. [130] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL]. [2024-09-16]. https://arxiv.org/abs/1406.2661. [131] OLLIVIER Y. Auto-encoders: reconstruction versus compression[EB/OL]. [2024-09-18]. https://arxiv.org/abs/1403.7752. [132] LARSEN A B L, S?NDERBY S K, Larochelle H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 1558-1566. [133] RIPPEL O, BOURDEV L. Real-time adaptive image compression[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 2922-2930. [134] AGUSTSSON E, TSCHANNEN M, MENTZER F, et al. Generative adversarial networks for extreme learned image compression[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 221-231. [135] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. [136] WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 63-79. [137] LI M Y, LIN J, DING Y Y, et al. GAN compression: efficient architectures for interactive conditional GANs[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5283-5293. [138] IWAI S, MIYAZAKI T, SUGAYA Y, et al. Fidelity-controllable extreme image compression with generative adversarial networks[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 8235-8242. [139] DASH S, KUMARAVELU G, NAGANOOR V, et al. CompressNet: generative compression at extremely low bitrates[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2314-2322. [140] WU L R, HUANG K J, SHEN H B. A GAN-based tunable image compression system[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2323-2331. [141] LIN N, ZHU Y L, ZHANG Y Q, et al. Edge-enhanced generative adversarial network for reconstruction of compressed image[C]//Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering. New York: ACM, 2021: 608-617. [142] GAO T W, LONG R J. Accumulation knowledge distillation for conditional GAN compression[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1294-1303. [143] HUANG D L, GAO F F, TAO X M, et al. Toward semantic communications: deep learning-based image semantic coding [J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 55-71. [144] ZHAO S H, YANG S Y, GU J, et al. Symmetrical lattice generative adversarial network for remote sensing images compression[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176: 169-181. [145] ZHU J C, GAO L L, SONG J K, et al. Label-guided generative adversarial network for realistic image synthesis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3311-3328. [146] XIAO J, BI X J. Model-guided generative adversarial networks for unsupervised fine-grained image generation[J]. IEEE Transactions on Multimedia, 2023, 26: 1188-1199. [147] CHENG K, ZOU Y F, ZHAO Y T, et al. A remote sensing satellite image compression method based on conditional generative adversarial network[C]//Image and Signal Processing for Remote Sensing XXIX, 2023: 322-331. [148] ZHAO Y Z, PO L M, LIN T Y, et al. HSGAN: hyperspectral reconstruction from RGB images with generative adversarial network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 17137-17150. [149] SOTTHIWAT E, ZHEN L L, ZHANG C, et al. Generative image reconstruction from gradients[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 21-31. [150] WANG M, ZHANG K, ZHANG L, et al. End-to-end image compression with swin-transformer[C]//Proceedings of the 2022 IEEE International Conference on Visual Communications and Image Processing. Piscataway: IEEE, 2022: 1-5. [151] WANG Y Q, LIANG F, FU H S, et al. Enhanced residual SwinV2 transformer for learned image compression[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2308.11864. [152] SHEN T M, LIU Y. Learned image compression with transformers[C]//Big Data V: Learning, Analytics, and Applications, 2023: 10-20. [153] SHEN T M, PENG W H, SHIH H C, et al. Learning-based conditional image compression[C]//Proceedings of the 2024 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2024: 1-5. [154] QIAN Y C, LIN M, SUN X Y, et al. Entroformer: a transformer-based entropy model for learned image compression[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2202.05492. [155] SHEN M H, GAN H P, MA C Y, et al. MTC-CSNet: marrying transformer and convolution for image compressed sensing[J]. IEEE Transactions on Cybernetics, 2024, 54(9): 4949-4961. [156] BAI Y C, YANG X, LIU X M, et al. Towards end-to-end image compression and analysis with transformers[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 104-112. [157] SHEN M H, GAN H P, NING C, et al. TransCS: a transformer-based hybrid architecture for image compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 6991-7005. [158] KAO C H, CHEN Y H, CHENG C E, et al. Transformer-based image compression with variable image quality objectives[C]//Proceedings of the 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2023: 1718-1725. [159] LU M, GUO P Y, SHI H Q, et al. Transformer-based image compression[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2111.06707. [160] ZHU Y, YANG Y, COHEN T. Transformer-based transform coding[C]//Proceedings of the 10th International Conference on Learning Representations, 2022. [161] KAO C H, WENG Y C, CHEN Y H, et al. Transformer-based variable-rate image compression with region-of-interest control[C]//Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 2960-2964. [162] LI B L, LIANG J, HAN J N. Variable-rate deep image compression with vision transformers[J]. IEEE Access, 2022, 10: 50323-50334. [163] ZOU R J, SONG C F, ZHANG Z X. The devil is in the details: window-based attention for image compression[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17471-17480. [164] JIN L X, WATANABE H. Perceptual image compression via stable diffusion at low bitrate[C]//Proceedings of the 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2024: 626-629. [165] LI J H, LI J T, HOU X S, et al. Exploring distortion prior with latent diffusion models for remote sensing image compression[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2406.03961. [166] LI Z, ZHOU Y, WEI H, et al. Diffusion-based extreme image compression with compressed feature initialization[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2410.02640. [167] CHEN J Y, CAI H, CHEN J S, et al. Deep compression autoencoder for efficient high-resolution diffusion models[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2410.10733. [168] KUANG H W, MA Y Y, YANG W H, et al. Consistency guided diffusion model with neural syntax for perceptual image compression[C]//Proceedings of the 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 1622-1631. [169] YANG R, MANDT S. Lossy image compression with conditional diffusion models[C]//Advances in Neural Information Processing Systems 37, 2024. [170] PAN Z H, ZHOU X, TIAN H. Extreme generative image compression by learning text embedding from diffusion models[EB/OL]. [2024-09-18]. https://arxiv.org/abs/2211.07793. [171] HWANG I, WOO M. Image compression and decompression framework based on latent diffusion model for breast mammography[EB/OL]. [2024-09-19]. https://arxiv.org/abs/ 2310.05299. [172] RELIC L, AZEVEDO R, GROSS M, et al. Lossy image compression with foundation diffusion models[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 303-319. [173] THEIS L, SALIMANS T, HOFFMAN M D, et al. Lossy compression with Gaussian diffusion[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2206.08889. [174] YANG Y B, WILL J C, MANDT S. Progressive compression with universally quantized diffusion models[EB/OL]. [2024-12-19]. https://arxiv.org/abs/2412.10935. [175] MA Y Y, YANG W H, LIU J Y. Correcting diffusion-based perceptual image compression with privileged end-to-end decoder[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2404. 04916. [176] SONG J, HE J X, YANG L J, et al. High frequency matters: uncertainty guided image compression with wavelet diffusion[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2407.12538. [177] ELATA N, MICHAELI T, ELAD M. Zero-shot image compression with diffusion-based posterior sampling[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2407.09896. [178] LI Z Y, ZHOU Y H, WEI H, et al. Towards extreme image compression with latent feature guidance and diffusion prior [EB/OL]. [2024-09-19]. https://arxiv.org/abs/2404.18820. [179] ESKICIOGLU A M, FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965. [180] TANCHENKO A. Visual-PSNR measure of image quality[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 874-878. [181] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [182] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers. Piscataway: IEEE, 2003: 1398-1402. |
| [1] | 张亦菲, 李艳玲, 葛凤培. 基于图深度学习的司法判决预测综述[J]. 计算机科学与探索, 2025, 19(8): 2024-2042. |
| [2] | 洪维, 耿沛霖, 王弘宇, 张雪芹, 顾春华. 结合图像显著性区域的局部动态干净标签后门攻击[J]. 计算机科学与探索, 2025, 19(8): 2229-2240. |
| [3] | 闵锋, 刘宇卓, 刘煜晖, 刘彪. 基于时域频域混合特征的多变量时序预测模型[J]. 计算机科学与探索, 2025, 19(8): 2099-2109. |
| [4] | 董甲东, 桑飞虎, 郭庆虎, 陈琳, 郑春香. 基于深度学习的目标检测算法轻量化研究综述[J]. 计算机科学与探索, 2025, 19(8): 2057-2084. |
| [5] | 许光远, 张亚强, 史宏志. 面向大规模DNN训练场景的容错技术综述[J]. 计算机科学与探索, 2025, 19(7): 1771-1788. |
| [6] | 陈旭, 张其, 王叔洋, 景永俊. 自适应积空间离散动态图链接预测模型[J]. 计算机科学与探索, 2025, 19(7): 1820-1831. |
| [7] | 许德龙, 林民, 王玉荣, 张树钧. 基于大语言模型的NLP数据增强方法综述[J]. 计算机科学与探索, 2025, 19(6): 1395-1413. |
| [8] | 李云飞, 魏霞, 蔡鑫, 吕明昱, 罗相涵. TCTP-YOLO:盲人出行的典型障碍物及交通标志检测方法[J]. 计算机科学与探索, 2025, 19(6): 1540-1552. |
| [9] | 周楠, 董永权, 闫林克, 金家永, 贺步贵. 融合学生知识状态与混沌萤火虫算法的习题推荐研究[J]. 计算机科学与探索, 2025, 19(6): 1620-1631. |
| [10] | 朱佳音, 李杨, 李明, 马金刚. 深度学习在宫颈细胞分割中的应用综述[J]. 计算机科学与探索, 2025, 19(6): 1476-1493. |
| [11] | 梁洁欣, 冯跃, 李健忠, 陈涛, 林卓胜, 何盈, 王松柏. 中医体质智能辨识方法的研究综述[J]. 计算机科学与探索, 2025, 19(6): 1455-1475. |
| [12] | 吕伏, 郑禹, 齐光尧, 李浩然. 极坐标编解码的轻量化SAR图像舰船斜框检测算法[J]. 计算机科学与探索, 2025, 19(6): 1564-1579. |
| [13] | 李少波, 王晓强, 郭利彪, 红英, 王志国. 草类植物无人机遥感图像中深度学习应用综述[J]. 计算机科学与探索, 2025, 19(5): 1157-1176. |
| [14] | 杨智勇, 郭洁铷, 郭子杭, 张瑞祥, 周瑜. 道路行人行为轨迹预测研究综述[J]. 计算机科学与探索, 2025, 19(5): 1177-1197. |
| [15] | 王宁, 智敏. 深度学习下的单阶段通用目标检测算法研究综述[J]. 计算机科学与探索, 2025, 19(5): 1115-1140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||