Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2345-2356.DOI: 10.3778/j.issn.1673-9418.2102055
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Tao1,2,+(), LIN Liqin1,2, ZHANG Yajuan1,2, NIU Xiaoxia1,2
Received:
2021-02-24
Revised:
2021-05-20
Online:
2022-10-01
Published:
2021-05-31
About author:
ZHANG Tao, born in 1979, Ph.D., associate professor, member of CCF. His research interests include medical signal processing, machine learning, concept-cognitive learning, etc.Supported by:
张涛1,2,+(), 林丽琴1,2, 张亚娟1,2, 牛晓霞1,2
通讯作者:
+ E-mail: zhtao@ysu.edu.cn作者简介:
张涛(1979—),男,河北秦皇岛人,博士,副教授,CCF会员,主要研究方向为医学信息处理、机器学习、概念认知学习等。基金资助:
CLC Number:
ZHANG Tao, LIN Liqin, ZHANG Yajuan, NIU Xiaoxia. Statistical Analysis of Local Gradient in Mel Transform Domain for Parkinson’s Dysphonia[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2345-2356.
张涛, 林丽琴, 张亚娟, 牛晓霞. 帕金森语音障碍的Mel变换域局部梯度统计分析[J]. 计算机科学与探索, 2022, 16(10): 2345-2356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102055
数据集名称 | SPDD | CPPDD |
---|---|---|
采集方式 | 持续发音 | 持续发音 |
采样频率/kHz | 44.1 | 44.1 |
样本数据 | 534(282患病) | 918(495患病) |
患者/健康比例 | 20∶20 | 36∶32 |
用药情况 | 未提供 | 有记录 |
Table 1 Comparison of SPDD and CPPDD datasets
数据集名称 | SPDD | CPPDD |
---|---|---|
采集方式 | 持续发音 | 持续发音 |
采样频率/kHz | 44.1 | 44.1 |
样本数据 | 534(282患病) | 918(495患病) |
患者/健康比例 | 20∶20 | 36∶32 |
用药情况 | 未提供 | 有记录 |
核函数 | 数据集 | 特征维度 | AC/% |
---|---|---|---|
Gaussian | SPDD | 5 | 98.77 |
CPPDD | 12 | 92.02 |
Table 2 SFLG optimal parameters of SVM classifier
核函数 | 数据集 | 特征维度 | AC/% |
---|---|---|---|
Gaussian | SPDD | 5 | 98.77 |
CPPDD | 12 | 92.02 |
| 数据集 | 特征维度 | AC/% |
---|---|---|---|
1 | SPDD | 3 | 96.50 |
3 | CPPDD | 11 | 92.62 |
Table 3 SFLG optimal parameters of KNN classifier
| 数据集 | 特征维度 | AC/% |
---|---|---|---|
1 | SPDD | 3 | 96.50 |
3 | CPPDD | 11 | 92.62 |
分类器 | SPDD数据集 | CPPDD数据集 | ||
---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | |
SVM | 98.13 | 98.03 | 92.19 | 92.10 |
KNN | 97.06 | 96.86 | 92.32 | 92.45 |
Table 4 Accuracy for SPDD and CPPDD datasets 单位:%
分类器 | SPDD数据集 | CPPDD数据集 | ||
---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | |
SVM | 98.13 | 98.03 | 92.19 | 92.10 |
KNN | 97.06 | 96.86 | 92.32 | 92.45 |
分类器 | SPDD训练 | CPPDD测试 | CPPDD训练 | SPDD测试 |
---|---|---|---|---|
SVM | 95.70 | 64.41 | 92.35 | 64.79 |
KNN | 94.15 | 57.08 | 92.03 | 55.81 |
Table 5 Cross validation classification accuracy
分类器 | SPDD训练 | CPPDD测试 | CPPDD训练 | SPDD测试 |
---|---|---|---|---|
SVM | 95.70 | 64.41 | 92.35 | 64.79 |
KNN | 94.15 | 57.08 | 92.03 | 55.81 |
分类器 | 验证 方法 | SPDD数据集 | CPPDD数据集 | ||||
---|---|---|---|---|---|---|---|
AC | SE | SP | AC | SE | SP | ||
SVM | 5折 | 97.53 | 97.61 | 96.05 | 92.17 | 93.46 | 90.34 |
10折 | 97.81 | 97.88 | 96.61 | 92.28 | 94.13 | 90.43 | |
留一 | 97.22 | 97.29 | 97.02 | 92.93 | 92.01 | 91.84 | |
KNN | 5折 | 96.85 | 96.23 | 94.03 | 91.14 | 96.75 | 84.53 |
10折 | 97.85 | 97.98 | 96.69 | 92.04 | 96.75 | 87.72 | |
留一 | 96.63 | 97.70 | 89.09 | 90.69 | 95.51 | 85.89 |
Table 6 Classification accuracy of cross validation in SPDD and CPPDD datasets
分类器 | 验证 方法 | SPDD数据集 | CPPDD数据集 | ||||
---|---|---|---|---|---|---|---|
AC | SE | SP | AC | SE | SP | ||
SVM | 5折 | 97.53 | 97.61 | 96.05 | 92.17 | 93.46 | 90.34 |
10折 | 97.81 | 97.88 | 96.61 | 92.28 | 94.13 | 90.43 | |
留一 | 97.22 | 97.29 | 97.02 | 92.93 | 92.01 | 91.84 | |
KNN | 5折 | 96.85 | 96.23 | 94.03 | 91.14 | 96.75 | 84.53 |
10折 | 97.85 | 97.98 | 96.69 | 92.04 | 96.75 | 87.72 | |
留一 | 96.63 | 97.70 | 89.09 | 90.69 | 95.51 | 85.89 |
方法 | 分类器 | SPDD数据集 | CPPDD数据集 | ||||
---|---|---|---|---|---|---|---|
AC | SE | SP | AC | SE | SP | ||
MFCC[ | SVM | 82.50 | 80.00 | 85.00 | — | — | — |
HFCC[ | SVM | 87.50 | 90.00 | 85.00 | — | — | — |
IMFCC[ | RF | 92.34 | 88.67 | 90.00 | 82.89 | 80.66 | 86.47 |
IMFCC[ | SVM | 94.74 | 88.24 | 100.00 | 81.36 | 79.66 | 82.46 |
卷积神经网络[ | — | 99.82 | — | — | — | — | — |
VGG16混合模型[ | — | 90.50 | 91.00 | 90.00 | — | — | — |
SFLG(ours) | SVM | 97.81 | 97.88 | 97.02 | 92.93 | 94.13 | 91.84 |
SFLG(ours) | KNN | 97.85 | 97.98 | 96.69 | 92.04 | 96.75 | 87.72 |
Table 7
方法 | 分类器 | SPDD数据集 | CPPDD数据集 | ||||
---|---|---|---|---|---|---|---|
AC | SE | SP | AC | SE | SP | ||
MFCC[ | SVM | 82.50 | 80.00 | 85.00 | — | — | — |
HFCC[ | SVM | 87.50 | 90.00 | 85.00 | — | — | — |
IMFCC[ | RF | 92.34 | 88.67 | 90.00 | 82.89 | 80.66 | 86.47 |
IMFCC[ | SVM | 94.74 | 88.24 | 100.00 | 81.36 | 79.66 | 82.46 |
卷积神经网络[ | — | 99.82 | — | — | — | — | — |
VGG16混合模型[ | — | 90.50 | 91.00 | 90.00 | — | — | — |
SFLG(ours) | SVM | 97.81 | 97.88 | 97.02 | 92.93 | 94.13 | 91.84 |
SFLG(ours) | KNN | 97.85 | 97.98 | 96.69 | 92.04 | 96.75 | 87.72 |
[1] | DUFFY J R. Motor speech disorders:substrates, differential diagnosis, and management[M]. Boston: Addison-Wesley, 2005. |
[2] |
LITTLE M A, MCSHARRY P E, ROBERTS S J, et al. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection[J]. BioMedical Engineering OnLine, 2007, 6(1): 23.
DOI URL |
[3] |
LITTLE M A, MC SHARRY P E, HUNTER E J, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.
DOI URL |
[4] | 张涛, 洪文学, 常凤香, 等. 基于元音分类度的帕金森病语音特征分析[J]. 中国生物医学工程学报, 2011, 30(3): 476-480. |
ZHANG T, HONG W X, CHANG F X, et al. Speech features analysis of Parkinson’s disease by vowel class separability[J]. Chinese Journal of Biomedical Engineering, 2011, 30(3): 476-480. | |
[5] |
SAKAR B E, ISENKUL M E, SAKAR C O, et al. Collec-tion and analysis of a Parkinson speech dataset with multiple types of sound recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 828-834.
DOI URL |
[6] | BENBA A, JILBAB A, HAMMOUCH A. Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s disease[J]. Innovation and Research in BioMedical Engineering, 2017, 38(6): 346-351. |
[7] | KARAN B, MAHTO K, SAHU S S. Detection of Parkinson disease using variational mode decomposition of speech signal[C]// Proceedings of the 2018 International Conference on Communication and Signal Processing, Chennai, Apr 3-5, 2018. Piscataway: IEEE, 2018: 508-512. |
[8] | 张小恒, 王力锐, 曹垚, 等. 混合语音段特征双边式优选算法用于帕金森病分类研究[J]. 生物医学工程学杂志, 2017, 34(6): 942-948. |
ZHANG X H, WANG L R, CAO Y, et al. Combining speech sample and feature bilateral selection algorithm for classification of Parkinson’s disease[J]. Chinese Journal of Biomedical Engineering, 2017, 34(6): 942-948. | |
[9] | 李勇明, 张成, 王品, 等. 面向帕金森病语音数据挖掘的分包融合集成算法[J]. 生物医学工程学杂志, 2019, 36(4): 548-556. |
LI Y M, ZHANG C, WANG P, et al. A partition bagging ensemble learning algorithm for Parkinson’s speech data mining[J]. Chinese Journal of Biomedical Engineering, 2019, 36(4): 548-556. | |
[10] | ZHANG T, ZHANG Y J, CAO Y Y, et al. Diagnosing Parkinson’s disease with speech signal based on convolutional neural network[J]. International Journal of Computer Applica- tions in Technology, 2020, 63(4): 348-353. |
[11] | 王娟, 徐志京. HR-DCGAN方法的帕金森声纹样本扩充及识别研究[J]. 小型微型计算机系统, 2019, 40(9): 2026-2032. |
WANG J, XU Z J. Study on augmentation and recognition of Parkinson’s voiceprint samples by HR-DCGAN method[J]. Journal of Chinese Computer Systems, 2019, 40(9): 2026- 2032. | |
[12] | AI-FATLAWI A H, JABARDI M H, LING S H. Efficient diagnosis system for Parkinson’s disease using deep belief network[C]// Proceedings of the 2016 IEEE Congress on Evo-lutionary Computation, Vancouver, Jul 24-29, 2016. Piscata-way: IEEE, 2016: 1324-1330. |
[13] | KHAN T, WESTIN J, DOUGHERTY M. Cepstral separation difference: a novel approach for speech impairment quant-ification in Parkinson’s disease[J]. Biocybernetics & Biomedical Engineering, 2014, 34(1): 25-34. |
[14] |
OROZCO-ARROYAVE J R, HÖNIG F, ARIAS-LONDOÑO J D, et al. Automatic detection of Parkinson’s disease in running speech spoken in three different languages[J]. The Journal of the Acoustical Society of America, 2016, 139(1):481-500.
DOI URL |
[15] | NARANJO L, PÉREZ C J, MARTÍN J. Addressing voice recording replications for tracking Parkinson’s disease progression[J]. Medical & Biological Engineering & Computing, 2017, 55(3): 365-373. |
[16] |
NARANJO L, PÉREZ C J, MARTÍN J, et al. A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications[J]. Computer Methods and Programs in Biomedicine, 2017, 142: 147-156.
DOI URL |
[17] | 张涛, 蒋培培, 张亚娟, 等. 基于时频混合域局部统计的帕金森病语音障碍分析方法研究[J]. 生物医学工程学杂志, 2021, 38(1): 21-29. |
ZHANG T, JIANG P P, ZHANG Y J, et al. Parkinson’s disease diagnosis based on local statistics of speech signal in transformation domain[J]. Journal of Biomedical Engineering, 2021, 38(1): 21-29. | |
[18] | ZHANG T, ZHANG Y J, SUN H, et al. Parkinson disease detection using energy direction features based on EMD from voice signal[J]. Biocybernetics and Biomedical Eng-ineering, 2020, 41(1): 127-141. |
[19] | 张涛, 蒋培培, 李林, 等. 基于偏序拓扑图的帕金森病语音障碍分析方法[J]. 中国生物医学工程学报, 2019, 38(1): 62-72. |
ZHANG T, JIANG P P, LI L, et al. Dysphonic analysis of speech disorders in Parkinson’s disease based on partially ordered topological graph[J]. Chinese Journal of Biomedical Engineering, 2019, 38(1): 62-72. | |
[20] | LITTLE M A, VAROQUAUX G, SAEB S, et al. Using and understanding cross-validation strategies. Perspectives on Saeb et al[J]. GigaScience, 2017, 6(5): 1-6. |
[21] |
BENBA A, JILBAB A, HAMMOUCH A. Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson’s disease and healthy people[J]. International Journal of Speech Technology, 2016, 19(3): 449-456.
DOI URL |
[22] |
KARAN B, SAHU S S, MAHTO K. Parkinson disease prediction using intrinsic mode function based features from speech signal[J]. Biocybernetics and Biomedical Engineering, 2020, 40(1): 249-264.
DOI URL |
[1] | XU Yangyang, WANG Yan. Research on Blockchain in Cloud Manufacturing Resource Allocation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2298-2309. |
[2] | WANG Feilong, LIU Ping, ZHANG Ling, LI Gang. Modified Algorithm of Capsule Network for Classifying Small Sample Image [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2387-2394. |
[3] | LI Chunbiao, XIE Linbo, PENG Li. Salient Object Detection with Feature Hybrid Enhancement and Multi-loss Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2395-2404. |
[4] | LI Xinchun, ZHAN Dechuan. Distributed Model Reuse with Multiple Classifiers [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2310-2319. |
[5] | SHI Min, SHEN Jialin, YI Qingming, LUO Aiwen. Rapid and Ultra-lightweight Semantic Segmentation in Urban Traffic Scene [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2377-2386. |
[6] | GENG Yaogang, MEI Hongyan, ZHANG Xing, LI Xiaohui. Review of Image Captioning Methods Based on Encoding-Decoding Technology [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2234-2248. |
[7] | BAI Xiaobo, SHAO Jingfeng, WANG Tieshan, LI Bo. Fruit Fly Optimization Algorithm Based on Segmented Search and Resource Allo-cation to Textile Enterprise [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2330-2344. |
[8] | WU Jing, XIE Hui, JIANG Huowen. Survey of Graph Neural Network in Recommendation System [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263. |
[9] | LUO Haiyin, ZHENG Yuhui. Survey of Research on Image Inpainting Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2193-2218. |
[10] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[11] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[12] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[13] | LI Zhenqi, WANG Jing, JIA Ziyu, LIN Youfang. Attention-Based Multi-dimensional Feature Graph Convolutional Network for Motor Imagery Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2050-2060. |
[14] | YANG Jun, LEI Xiwen. Co-segmentation of 3D Point Cloud Shape Clusters Based on Weakly Supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2121-2131. |
[15] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/