Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 280-295.DOI: 10.3778/j.issn.1673-9418.2104042
• Surveys and Frontiers • Previous Articles Next Articles
WANG Chunyu1, MA Zhiqiang1,2,+(), DU Baoxiang1, JIA Wenchao1, WANG Hongbin1, BAO Caijilahu1
Received:
2021-04-12
Revised:
2021-09-07
Online:
2022-02-01
Published:
2021-09-13
About author:
WANG Chunyu, born in 1997, M.S. candidate. His research interests include natural language processing and dialogue generation.Supported by:
王春喻1, 马志强1,2,+(), 杜宝祥1, 贾文超1, 王洪彬1, 宝财吉拉呼1
通讯作者:
+ E-mail: mzq_bim@imut.edu.cn作者简介:
王春喻(1997—),男,山西忻州人,硕士研究生,主要研究方向为自然语言处理、对话生成。基金资助:
CLC Number:
WANG Chunyu, MA Zhiqiang, DU Baoxiang, JIA Wenchao, WANG Hongbin, BAO Caijilahu. Survey of Research on End-to-End Emotional Dialogue Generation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 280-295.
王春喻, 马志强, 杜宝祥, 贾文超, 王洪彬, 宝财吉拉呼. 面向端到端的情感对话生成研究综述[J]. 计算机科学与探索, 2022, 16(2): 280-295.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104042
输入/回复 | 情感类别 | 举例 |
---|---|---|
输入 回复 | 悲伤 | 还没有到啊?辛苦了 呜呜呜,施工的日子很辛苦的! |
输入 回复 | 喜爱 | 小美女啊 呵呵,是不是很可爱啊! |
输入 回复 | 高兴 | 生日快乐! 多谢!谢谢你啊! |
输入 回复 | 生气 | 我可没惹你,别说脏话! 你傻啊,我也没说你啊。 |
输入 回复 | 厌恶 | 6点起身去搭车,好困好难啊! 坐公交车太痛苦了! |
Table 1 Example of emotional dialogue generation
输入/回复 | 情感类别 | 举例 |
---|---|---|
输入 回复 | 悲伤 | 还没有到啊?辛苦了 呜呜呜,施工的日子很辛苦的! |
输入 回复 | 喜爱 | 小美女啊 呵呵,是不是很可爱啊! |
输入 回复 | 高兴 | 生日快乐! 多谢!谢谢你啊! |
输入 回复 | 生气 | 我可没惹你,别说脏话! 你傻啊,我也没说你啊。 |
输入 回复 | 厌恶 | 6点起身去搭车,好困好难啊! 坐公交车太痛苦了! |
数据集 | 语言 | 描述 |
---|---|---|
MojiTalk[ | 英文 | 在推特上抓取了由原始帖子和回复组成的对话对。对对话的回应必须包括64个表情标签中的至少1个 |
Cornell[ | 英文 | 包含从原始电影脚本中提取的83 097个对话框。总共有304 713句话 |
Twitter[ | 英文 | 包含130万条推特对话 |
Weibo[ | 中文 | 来自微博的960万条消息-回复对 |
Ubuntu[ | 英文 | 摘自Ubuntu IRC聊天日志 |
Daily dialog[ | 英文 | 练习英语对话服务的网站上抓取的 |
STC[ | 中文 | 中文短文对话 |
DST-1[ | 英文 | 英文多轮对话 |
Subtle[ | 英文 | 积极情感对话 |
Open subtitles[ | 英文 | 句子总数为1 130万,每个句子的最小长度为6个单词 |
Douban[ | 中文 | 从豆瓣群中抓取了110万个大于2轮的二元对话 |
Table 2 Emotional dialogue dataset
数据集 | 语言 | 描述 |
---|---|---|
MojiTalk[ | 英文 | 在推特上抓取了由原始帖子和回复组成的对话对。对对话的回应必须包括64个表情标签中的至少1个 |
Cornell[ | 英文 | 包含从原始电影脚本中提取的83 097个对话框。总共有304 713句话 |
Twitter[ | 英文 | 包含130万条推特对话 |
Weibo[ | 中文 | 来自微博的960万条消息-回复对 |
Ubuntu[ | 英文 | 摘自Ubuntu IRC聊天日志 |
Daily dialog[ | 英文 | 练习英语对话服务的网站上抓取的 |
STC[ | 中文 | 中文短文对话 |
DST-1[ | 英文 | 英文多轮对话 |
Subtle[ | 英文 | 积极情感对话 |
Open subtitles[ | 英文 | 句子总数为1 130万,每个句子的最小长度为6个单词 |
Douban[ | 中文 | 从豆瓣群中抓取了110万个大于2轮的二元对话 |
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Zhou等人[ | 2018 | 对话中的情感响应问题 | STC[ | A.E: PPL M.E: Content、Emotion | PPL相对于Seq2Seq降低2.10,内容与情感得分分别提高0.440、0.270 |
Shantala等人[ | 2018 | 对话中的情感响应问题 | Cornell[ | A.E: PPL | PPL相对于Seq2Seq降低0.35 |
Huang等人[ | 2018 | 强迫对话生成表达情感的问题 | Open subtitles[ | A.E: EC (emotional consistency) | 模型生成的9类情感准确率达到70%,情感表达优于基线 |
Yuan等人[ | 2017 | 对话中的情感一致性问题 | Weibo[ | M.E: Content、Emotion | 情感与内容的生成显著提高 |
Sun等人[ | 2018 | 内容与情感层面回复差的问题 | Weibo[ | A.E: EC、Coherence | EC方面相对于基线模型提高了0.014 |
Zhou等人[ | 2018 | 未考虑对话者之间的情感交互 | Weibo[ | A.E: BLEU、Distinct M.E: Content、Emotion | 相对于Seq2Seq模型BLEU提高0.04,Distinct提高0.18,情感准确率提高0.04 |
Huang等人[ | 2018 | 对话中的情感响应问题 | Open subtitles[ | A.E: EC M.E: Emotion | 相对于基线模型,EC有显著提升 |
Wei等人[ | 2019 | 生成时忽略上文的情感信息 | STC[ | A.E: Distinct M.E: Content、Emotion | 相对于基线模型Distinct提高0.01,内容与情感得分分别提高0.025、0.070 |
Song等人[ | 2019 | 响应时无法表达特定的情感问题 | STC[ | A.E: E-b (embedding-based)、Distinct、EC、BLEU M.E: Content、Emotion | BLEU、Distinct、EC分别提高0.23、0.007 5、0.45,内容与情感得分分别提高0.026、0.392 |
Guo等人[ | 2020 | 解决开放域对话系统的情感回复问题 | Weibo[ | A.E: BLEU、E-b、Distinct、EC | BLEU、Distinct、EC分别提高0.24、0.008 3、0.46 |
Chen等人[ | 2019 | 回复生成情感的恰当性问题 | STC[ | M.E: Content、Emotion | 情感与内容的生成显著提高 |
Ma等人[ | 2020 | 生成情感匮乏且与上下文无关的回复 | Douban[ | A.E: BLEU M.E: Content、Emotion | BLEU提高1.60,内容与情感得分分别提高0.011、0.604 |
Table 3 Research on emotional embedding encoding task
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Zhou等人[ | 2018 | 对话中的情感响应问题 | STC[ | A.E: PPL M.E: Content、Emotion | PPL相对于Seq2Seq降低2.10,内容与情感得分分别提高0.440、0.270 |
Shantala等人[ | 2018 | 对话中的情感响应问题 | Cornell[ | A.E: PPL | PPL相对于Seq2Seq降低0.35 |
Huang等人[ | 2018 | 强迫对话生成表达情感的问题 | Open subtitles[ | A.E: EC (emotional consistency) | 模型生成的9类情感准确率达到70%,情感表达优于基线 |
Yuan等人[ | 2017 | 对话中的情感一致性问题 | Weibo[ | M.E: Content、Emotion | 情感与内容的生成显著提高 |
Sun等人[ | 2018 | 内容与情感层面回复差的问题 | Weibo[ | A.E: EC、Coherence | EC方面相对于基线模型提高了0.014 |
Zhou等人[ | 2018 | 未考虑对话者之间的情感交互 | Weibo[ | A.E: BLEU、Distinct M.E: Content、Emotion | 相对于Seq2Seq模型BLEU提高0.04,Distinct提高0.18,情感准确率提高0.04 |
Huang等人[ | 2018 | 对话中的情感响应问题 | Open subtitles[ | A.E: EC M.E: Emotion | 相对于基线模型,EC有显著提升 |
Wei等人[ | 2019 | 生成时忽略上文的情感信息 | STC[ | A.E: Distinct M.E: Content、Emotion | 相对于基线模型Distinct提高0.01,内容与情感得分分别提高0.025、0.070 |
Song等人[ | 2019 | 响应时无法表达特定的情感问题 | STC[ | A.E: E-b (embedding-based)、Distinct、EC、BLEU M.E: Content、Emotion | BLEU、Distinct、EC分别提高0.23、0.007 5、0.45,内容与情感得分分别提高0.026、0.392 |
Guo等人[ | 2020 | 解决开放域对话系统的情感回复问题 | Weibo[ | A.E: BLEU、E-b、Distinct、EC | BLEU、Distinct、EC分别提高0.24、0.008 3、0.46 |
Chen等人[ | 2019 | 回复生成情感的恰当性问题 | STC[ | M.E: Content、Emotion | 情感与内容的生成显著提高 |
Ma等人[ | 2020 | 生成情感匮乏且与上下文无关的回复 | Douban[ | A.E: BLEU M.E: Content、Emotion | BLEU提高1.60,内容与情感得分分别提高0.011、0.604 |
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Colombo等人[ | 2019 | 没有对响应的情感内容进行明确的控制 | Open subtitles[ | A.E: BLEU、Distinct M.E: Content、Emotion | BLEU提高0.12,Distinct提高0.13 |
Ma等人[ | 2020 | 对话中的情感一致性问题 | Weibo[ | A.E: BLEU、PPL、ROUGE M.E: Content、Emotion | PPL取得了最低的分数,BLEU与ROUGE提高了0.04 |
Asghar等人[ | 2020 | 忽略交互者的情感身份 | Cornell[ | M.E: SC (syntactic coherence)、Naturalness、Emotional | 与基线模型相比,SC、自然性、情感得分分别提高0.11、0.02、0.04 |
Sun等人[ | 2020 | 解决响应缺乏逻辑和情感的问题 | Weibo[ | A.E: PPL M.E: Emotional、Consistency、Logic | PPL相对于Seq2Seq降低5.20,情感、一致性、逻辑性得分分别提高0.705、0.102、0.306 |
Li等人[ | 2020 | 解决忽略对话响应中的情感因素 | Weibo[ | A.E: PPL、Accuracy M.E: Content、Emotion | PPL相对于Seq2Seq降低5.00,情感与内容得分远高于基线 |
Table 4 Research on emotional control task of responsive generation
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Colombo等人[ | 2019 | 没有对响应的情感内容进行明确的控制 | Open subtitles[ | A.E: BLEU、Distinct M.E: Content、Emotion | BLEU提高0.12,Distinct提高0.13 |
Ma等人[ | 2020 | 对话中的情感一致性问题 | Weibo[ | A.E: BLEU、PPL、ROUGE M.E: Content、Emotion | PPL取得了最低的分数,BLEU与ROUGE提高了0.04 |
Asghar等人[ | 2020 | 忽略交互者的情感身份 | Cornell[ | M.E: SC (syntactic coherence)、Naturalness、Emotional | 与基线模型相比,SC、自然性、情感得分分别提高0.11、0.02、0.04 |
Sun等人[ | 2020 | 解决响应缺乏逻辑和情感的问题 | Weibo[ | A.E: PPL M.E: Emotional、Consistency、Logic | PPL相对于Seq2Seq降低5.20,情感、一致性、逻辑性得分分别提高0.705、0.102、0.306 |
Li等人[ | 2020 | 解决忽略对话响应中的情感因素 | Weibo[ | A.E: PPL、Accuracy M.E: Content、Emotion | PPL相对于Seq2Seq降低5.00,情感与内容得分远高于基线 |
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Asghar等人[ | 2018 | 忽略对话层面情感内容的问题 | Cornell[ | M.E: SC、Natural、EAp (emotional appropriateness) | SC、自然性、EAp分别提高0.28、0.38、0.41 |
Zhong等人[ | 2019 | 回复情感内容单调的问题 | Open subtitles[ | M.E: Content、Emotion | 内容情感得分分别提高0.18、0.27 |
Liu等人[ | 2019 | 忽略情感状态对响应生成的影响 | Weibo[ | A.E: BLEU、PPL M.E: Content、Emotion | PPL降低5.60,BLEU提高0.20,内容与情感得分分别提高0.180、0.270 |
Peng等人[ | 2019 | 忽略回复中结合主题与情感的必要性 | Weibo[ | A.E: Distinct M.E: Content、Emotion | Distinct提高0.10,在内容与情感得分方面分别提高0.200、0.120 |
Sun等人[ | 2018 | 在内容和情感层面回应较差 | Weibo[ | M.E: EC、Coherence | EC得分提高0.02,内容得分降低0.07 |
Sun等人[ | 2019 | 生成回复逻辑差的问题 | Weibo[ | A.E: Distinct、E-b M.E: Emotional、Consistency、Logic | 在A.E方面优于基线,情感、一致性、逻辑性得分分别提高0.070、0.350、0.280 |
Table 5 Research on decoding task of emotional response generation
作者 | 时间 | 解决的问题 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|
Asghar等人[ | 2018 | 忽略对话层面情感内容的问题 | Cornell[ | M.E: SC、Natural、EAp (emotional appropriateness) | SC、自然性、EAp分别提高0.28、0.38、0.41 |
Zhong等人[ | 2019 | 回复情感内容单调的问题 | Open subtitles[ | M.E: Content、Emotion | 内容情感得分分别提高0.18、0.27 |
Liu等人[ | 2019 | 忽略情感状态对响应生成的影响 | Weibo[ | A.E: BLEU、PPL M.E: Content、Emotion | PPL降低5.60,BLEU提高0.20,内容与情感得分分别提高0.180、0.270 |
Peng等人[ | 2019 | 忽略回复中结合主题与情感的必要性 | Weibo[ | A.E: Distinct M.E: Content、Emotion | Distinct提高0.10,在内容与情感得分方面分别提高0.200、0.120 |
Sun等人[ | 2018 | 在内容和情感层面回应较差 | Weibo[ | M.E: EC、Coherence | EC得分提高0.02,内容得分降低0.07 |
Sun等人[ | 2019 | 生成回复逻辑差的问题 | Weibo[ | A.E: Distinct、E-b M.E: Emotional、Consistency、Logic | 在A.E方面优于基线,情感、一致性、逻辑性得分分别提高0.070、0.350、0.280 |
作者 | 时间 | 解决的问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Xie等人[ | 2019 | 忽略人机交互过程中的情感互动 | 情感回复解码任务 | Cornell[ Daily dialog[ | A.E: BLEU、PPL M.E: GC (grammatical correctness)、Contextual Cohe-rence、EAp | 相比于基线模型,BLEU提高0.20,PPL降低0.12,在GC、上下文连贯性、EAp得分方面分别提高0.03、0.28、0.23 |
Lubis等人[ | 2018 | 忽略用户在响应生成过程中的情感 | 情感嵌入编码任务 | Subtle[ | A.E: PPL M.E: Emotional Impact、Na-turalness | PPL降低18.30,情感影响力得分与自然性得分分别提高1.02、0.88 |
Table 6 Research on generation of emotional dialogue based on HRED model
作者 | 时间 | 解决的问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Xie等人[ | 2019 | 忽略人机交互过程中的情感互动 | 情感回复解码任务 | Cornell[ Daily dialog[ | A.E: BLEU、PPL M.E: GC (grammatical correctness)、Contextual Cohe-rence、EAp | 相比于基线模型,BLEU提高0.20,PPL降低0.12,在GC、上下文连贯性、EAp得分方面分别提高0.03、0.28、0.23 |
Lubis等人[ | 2018 | 忽略用户在响应生成过程中的情感 | 情感嵌入编码任务 | Subtle[ | A.E: PPL M.E: Emotional Impact、Na-turalness | PPL降低18.30,情感影响力得分与自然性得分分别提高1.02、0.88 |
作者 | 时间 | 解决的问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Gu等人[ | 2019 | 当前研究缺乏决定恰当的情感策略的能力 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA (emotion accuracy) M.E: Content、Emotion | PPL降低32.50,EA提高0.48,在内容与情感得分方面分别提高0.07、0.26 |
Xu等人[ | 2019 | 内容一致性与情感可控性较差 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA、Distinct M.E: Content、Emotion | PPL降低32.30,EA提高0.43,Distinct提高0.39,内容与情感得分分别提高0.24、0.08 |
Kong等人[ | 2019 | 缺乏对对话中情感控制策略的研究 | 回复情感控制任务 | Mojitalk[ | A.E: PPL、EA M.E: Quality | PPL降低88.04,EA提高0.23,回复质量提高1.8 |
Yao等人[ | 2021 | 在相同情感背景下的回复情感的恰当性 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA M.E: Content、Emotion | PPL降低13.80,EA提高0.62,内容与情感得分分别提高0.05、0.32 |
Peng等人[ | 2020 | 改善情感的响应表达 | 回复情感控制任务 | Twitter[ | A.E: PPL、EA、BLEU M.E: GC、Naturalness、EC | BLEU降低0.15,PPL降低47.01,EA提高0.92,GC提高0.14,自然性提高0.35,EC提高0.69 |
Huo等人[ | 2020 | 未同时考虑情感表达和生成过程中的主题相关性 | 情感回复解码任务 | Weibo[ | A.E: PPL、EA、E-b M.E: Fluency、Topic relevance | PPL降低19.90,流畅性与主题相关性得分分别提高0.35、1.38 |
Deng等人[ | 2020 | 未能满足用户情感交流的需求,且响应生成质量较差 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA、Distinct M.E: Content、Emotion | PPL降低33.70,EA提高0.54,Distinct提高0.28,内容与情感得分分别提高0.08、0.28 |
Table 7 Research on generation of emotional dialogue based on CVAE model
作者 | 时间 | 解决的问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Gu等人[ | 2019 | 当前研究缺乏决定恰当的情感策略的能力 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA (emotion accuracy) M.E: Content、Emotion | PPL降低32.50,EA提高0.48,在内容与情感得分方面分别提高0.07、0.26 |
Xu等人[ | 2019 | 内容一致性与情感可控性较差 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA、Distinct M.E: Content、Emotion | PPL降低32.30,EA提高0.43,Distinct提高0.39,内容与情感得分分别提高0.24、0.08 |
Kong等人[ | 2019 | 缺乏对对话中情感控制策略的研究 | 回复情感控制任务 | Mojitalk[ | A.E: PPL、EA M.E: Quality | PPL降低88.04,EA提高0.23,回复质量提高1.8 |
Yao等人[ | 2021 | 在相同情感背景下的回复情感的恰当性 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA M.E: Content、Emotion | PPL降低13.80,EA提高0.62,内容与情感得分分别提高0.05、0.32 |
Peng等人[ | 2020 | 改善情感的响应表达 | 回复情感控制任务 | Twitter[ | A.E: PPL、EA、BLEU M.E: GC、Naturalness、EC | BLEU降低0.15,PPL降低47.01,EA提高0.92,GC提高0.14,自然性提高0.35,EC提高0.69 |
Huo等人[ | 2020 | 未同时考虑情感表达和生成过程中的主题相关性 | 情感回复解码任务 | Weibo[ | A.E: PPL、EA、E-b M.E: Fluency、Topic relevance | PPL降低19.90,流畅性与主题相关性得分分别提高0.35、1.38 |
Deng等人[ | 2020 | 未能满足用户情感交流的需求,且响应生成质量较差 | 回复情感控制任务 | Weibo[ | A.E: PPL、EA、Distinct M.E: Content、Emotion | PPL降低33.70,EA提高0.54,Distinct提高0.28,内容与情感得分分别提高0.08、0.28 |
作者 | 时间 | 问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Sun等人[ | 2019 | 生成语义逻辑差、没有情感的通用回复 | 情感回复解码任务 | Weibo[ | A.E: PPL、EA M.E: Consistency、Logic、Emotion | PPL降低0.56,EA提高0.70,一致性、逻辑性、情感得分分别提高0.14、0.45、0.70 |
Li等人[ | 2020 | 未考虑用户情感对生成的影响 | 情感回复解码任务 | Mojitalk[ | A.E: BLEU、Distinct、Accuracy M.E: GC、TC (topic coherency)、EC | Distinct提高3.56,BLEU提高3.99,准确率提高1.6,GC、TC、EC分别提高1.50、0.10、0.70 |
Table 8 Research on emotional dialogue generation based on Transformer model
作者 | 时间 | 问题 | 任务 | 数据集 | 评价指标 | 性能 |
---|---|---|---|---|---|---|
Sun等人[ | 2019 | 生成语义逻辑差、没有情感的通用回复 | 情感回复解码任务 | Weibo[ | A.E: PPL、EA M.E: Consistency、Logic、Emotion | PPL降低0.56,EA提高0.70,一致性、逻辑性、情感得分分别提高0.14、0.45、0.70 |
Li等人[ | 2020 | 未考虑用户情感对生成的影响 | 情感回复解码任务 | Mojitalk[ | A.E: BLEU、Distinct、Accuracy M.E: GC、TC (topic coherency)、EC | Distinct提高3.56,BLEU提高3.99,准确率提高1.6,GC、TC、EC分别提高1.50、0.10、0.70 |
评价内容 | 分值 | 评价标准 |
---|---|---|
内容 | 0 | 回复要么有语法错误,要么完全不相关 |
1 | 回复应有正确的语法,但过于普遍 | |
2 | 回复应有正确的语法,并且相关和自然 | |
情感 | 0 | 回复要么没有或者传达了不恰当的情感 |
1 | 回复传达了不充分但恰当的情感 | |
2 | 回复传达了足够和恰当的情感 |
Table 9 Standard of emotional dialogue generation manual evaluation
评价内容 | 分值 | 评价标准 |
---|---|---|
内容 | 0 | 回复要么有语法错误,要么完全不相关 |
1 | 回复应有正确的语法,但过于普遍 | |
2 | 回复应有正确的语法,并且相关和自然 | |
情感 | 0 | 回复要么没有或者传达了不恰当的情感 |
1 | 回复传达了不充分但恰当的情感 | |
2 | 回复传达了足够和恰当的情感 |
[1] | TURINGA M. Computing machinery and intelligence[J]. Mind, 1950, 59(236):433-460. |
[2] | PICARD R W. Affective computing[M]. Cambridge: MIT Press, 1997. |
[3] |
PRENDINGER H, ISHIZUKA M. The empathic companion: a character-based interface that addresses users’ affective states[J]. Applied Artificial Intelligence, 2005, 19(3/4):267-285.
DOI URL |
[4] | KESHTKAR F, INKPEN D. A pattern-based model for generating text to express emotion[C]//LNCS 6975: Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction, Memphis, Oct 9-12, 2011. Berlin, Heidelberg: Springer, 2011: 11-21. |
[5] | SKOWRON M. Affect listeners: acquisition of affective states by means of conversational systems[C]//LNCS 5967: Proceedings of the 2nd COST 2102 International Training School, Dublin, Mar 23-27, 2009. Berlin, Heidelberg: Springer, 2009: 169-181. |
[6] | 李赟, 武斌. 情感对话生成研究综述[J]. 新一代信息技术, 2019, 2(24):15-23. |
LI Y, WU B. Survey on emotional dialogue generation[J]. New Generation of Information Technology, 2019, 2(24):15-23. | |
[7] | PAMUNGKAS E W. Emotionally-aware chatbots: a survey[J]. arXiv:1906.09774, 2019. |
[8] |
MA Y K, NGUYEN K L, XING F Z, et al. A survey on empathetic dialogue systems[J]. Information Fusion, 2020, 64:50-70.
DOI URL |
[9] | 庄寅, 刘箴, 刘婷婷, 等. 文本情感对话系统研究综述[J]. 计算机科学与探索, 2021, 15(5):825-837. |
ZHUANG Y, LIU Z, LIU T T, et al. Survey of affective-based dialogue system[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5):825-837. | |
[10] | ZHOU X D, WANG W Y. Mojitalk: generating emotional responses at scale[J]. arXiv:1711.04090, 2017. |
[11] | DANESCU-NICULESCU-MIZIL C, LEE L. Chameleons in imagined conversations: a new approach to understanding coordination of linguistic style in dialogs[J]. arXiv:1106. 3077, 2011. |
[12] | HU T R, XU A B, LIU Z, et al. Touch your heart: a tone-aware chatbot for customer care on social media[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Apr 21-26, 2018. New York: ACM, 2018: 415. |
[13] | HUANG X J, JIANG J, ZHAO D Y, et al. Natural language processing and Chinese computing[C]//LNCS 10619: Proceedings of the 6th CCF International Conference, Dalian, Nov 8-12, 2017. Cham: Springer, 2018. |
[14] | UTHUS D C, AHA D W. The ubuntu chat corpus for multiparticipant chat analysis[C]//Proceedings of the 2013 AAAI Spring Symposium on Analyzing Microtext, Palo Alto, Mar 25-27, 2013. Menlo Park: AAAI, 2013: 1-4. |
[15] | LI Y R, SU H, SHEN X Y, et al. Dailydialog: a manually labelled multi-turn dialogue dataset[J]. arXiv:1710.03957, 2017. |
[16] | SHANG L F, LU Z D, LI H. Neural responding machine for short-text conversation[J]. arXiv:1503.02364, 2015. |
[17] | RAUX A, LANGNER B, BOHUS D, et al. Let’s go public! Taking a spoken dialog system to the real world[C]// Proceedings of the 9th European Conference on Speech Communication and Technology, Lisbon, Sep 4-8, 2005: 885-888. |
[18] | LUBIS N, SAKTI S, YOSHINO K, et al. Eliciting positive emotion through affect-sensitive dialogue response generation: a neural network approach[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5293-5300. |
[19] | TIEDEMANN J. News from OPUS—A collection of multilingual parallel corpora with tools and interfaces[M]//NICOLOV N, BONTCHEVA K, ANGELOVA G, eds. Advances in Natural Language Processing. Amsterdam: John Benjamins, 2009: 237-248. |
[20] | SONG Y P, YAN R, LI X, et al. Two are better than one: an ensemble of retrieval-and generation-based dialog systems[J]. arXiv:1610.07149, 2016. |
[21] | RITTER A, CHERRY C, DOLAN W B. Data-driven response generation in social media[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Jul 27-31, 2011. Stroudsburg: ACL, 2011: 583-593. |
[22] | VINYALS O, LE Q V. A neural conversational model[J]. arXiv:1506.05869, 2015. |
[23] | MOU L L, SONG Y P, YAN R, et al. Sequence to backward and forward sequences: a content-introducing approach to generative short-text conversation[J]. arXiv:1607.00970, 2016. |
[24] | WU Y, WU W, XING C, et al. Sequential matching network: a new architecture for multi-turn response selection in retrieval-based chatbots[J]. arXiv:1612.01627, 2016. |
[25] | LI J W, MONROE W, RITTER A, et al. Deep reinforcement learning for dialogue generation[J]. arXiv:1606.01541, 2016. |
[26] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 3104-3112. |
[27] | SERBAN I V, SORDONI A, BENGIO Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network models[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Stroudsburg: ACL, 2016: 3776-3784. |
[28] | KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. |
[29] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017. |
[30] | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014. |
[31] | CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406. 1078, 2014. |
[32] | MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model[C]// Proceedings of the 11th Annual Conference of the International Speech Communication Association, Makuhari, Sep 26-30, 2010: 1045-1048. |
[33] | CHUNG J, GÜLÇEHRE Ç, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. |
[34] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
DOI URL |
[35] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
DOI URL |
[36] | ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 730-738. |
[37] | SHANTALA R, KYSELOV G, KYSELOVA A. Neural dialogue system with emotion embeddings[C]//Proceedings of the 2018 IEEE 1st International Conference on System Analysis and Intelligent Computing, Ukraine, Oct 8-12, 2018. Piscataway: IEEE, 2018: 1-4. |
[38] | HUANG C Y, ZAÏANE O R, TRABELSI A, et al. Automatic dialogue generation with expressed emotions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 49-54. |
[39] | YUAN J H, ZHAO H P, ZHAO Y Y, et al. Babbling-the HIT-SCIR system for emotional conversation generation[C]//LNCS 10619: Proceedings of the 6th CCF International Conference on Natural Language Processing and Chinese Computing, Dalian, Nov 8-12, 2017. Cham: Springer, 2017: 632-641. |
[40] |
SUN X, PENG X Q, DING S. Emotional human-machine conversation generation based on long short-term memory[J]. Cognitive Computation, 2018, 10(3):389-397.
DOI URL |
[41] | ZHOU Z H, LAN M, WU Y B. A neural generation-based conversation model using fine-grained emotion-guide attention[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Jul 8-13, 2018. Piscataway: IEEE, 2018: 1-8. |
[42] | HUANG C Y, ZAÏANE O R. Generating responses expressing emotion in an open-domain dialogue system[C]//LNCS 11551: Proceedings of the 2018 International Conference on Internet Science, St. Petersburg, Oct 24-26, 2018. Cham: Springer, 2018: 100-112. |
[43] | WEI W, LIU J Y, MAO X L, et al. Emotion-aware chat machine: automatic emotional response generation for human-like emotional interaction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1401-1410. |
[44] | SONG Z Q, ZHENG X Q, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28- Aug 2, 2019. Stroudsburg: ACL, 2019: 3685-3695. |
[45] |
GUO Q Q, ZHU Z F, LU Q, et al. A dynamic emotional session generation model based on Seq2Seq and a dictionary-based attention mechanism[J]. Applied Sciences, 2020, 10(6):1967.
DOI URL |
[46] | CHEN Z X, SONG R H, XIE X, et al. Neural response generation with relevant emotions for short text conversation[C]//LNCS 11838: Proceedings of the 8th CCF International Conference on Natural Language Processing and Chinese Computing, Dunhuang, Oct 9-14, 2019. Cham: Springer, 2019: 117-129. |
[47] | ZHOU G Y, FANG Y Z, PENG Y H, et al. Neural conversation generation with auxiliary emotional supervised models[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2019, 19(2):1-17. |
[48] | MA Z Q, DU B X, SHEN J, et al. A sentimental and context-sensitive model for the Seq2Seq-based dialogue generation[J]. Elektrotehniški Vestnik, 2020, 87(3):127-134. |
[49] | COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[J]. arXiv:1904.02793, 2019. |
[50] |
MA Z Q, YANG R, DU B X, et al. A control unit for emotional conversation generation[J]. IEEE Access, 2020, 8:43168-43176.
DOI URL |
[51] | ASGHAR N, KOBYZEV I, HOEY J, et al. Generating emotionally aligned responses in dialogues using affect control theory[J]. arXiv:2003.03645, 2020. |
[52] |
SUN X, LI J, WEI X, et al. Emotional editing constraint conversation content generation based on reinforcement learning[J]. Information Fusion, 2020, 56:70-80.
DOI URL |
[53] | LI Y, WU B. Emotional dialogue generation with generative adversarial networks[C]//Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, Jun 12-14, 2020. Piscataway: IEEE, 2020: 868-873. |
[54] | ASGHAR N, POUPART P, HOEY J, et al. Affective neural response generation[C]//LNCS 10772: Proceedings of the 40th European Conference on IR Research Advances in Information Retrieval, Grenoble, Mar 26-29, 2018. Cham: Springer, 2018: 154-166. |
[55] | ZHONG P X, WANG D, MIAO C Y. An affect-rich neural conversational model with biased attention and weighted cross-entropy loss[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27 - Feb 1, 2019. Menlo Park: AAAI, 2019: 7492-7500. |
[56] |
LIU F, MAO Q R, WANG L J, et al. An emotion-based responding model for natural language conversation[J]. World Wide Web, 2019, 22(2):843-861.
DOI URL |
[57] |
PENG Y H, FANG Y Z, XIE Z W, et al. Topic-enhanced emotional conversation generation with attention mechanism[J]. Knowledge-Based Systems, 2019, 163:429-437.
DOI URL |
[58] | SUN X, CHEN X M, PEI Z M, et al. Emotional human machine conversation generation based on SeqGAN[C]// Proceedings of the 2018 1st Asian Conference on Affective Computing and Intelligent Interaction, Beijing, May 20-22, 2018. Piscataway: IEEE, 2018: 1-6. |
[59] | SUN X, LI J Y, TAO J H. Emotional conversation generation orientated syntactically constrained bidirectional-asynchronous framework[J]. IEEE Transactions on Affective Computing, 2019. |
[60] | BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3:1137-1155. |
[61] | PAPINENI K, ROUKOS S, WARD T, et al. Bleu: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Jul 6-12, 2002. Stroudsburg: ACL, 2002: 311-318. |
[62] | LIN C Y. Rouge: a package for automatic evaluation of summaries[C]//Proceedings of the 2004 Workshop on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Jul 25-26, 2004. Stroudsburg: ACL, 2004: 74-81. |
[63] | LIU C W, LOWE R, SERBAN I V, et al. How not to evaluate your dialogue system: an empirical study of unsupervised evaluation metrics for dialogue response generation[J]. arXiv:1603.08023, 2016. |
[64] | LI J W, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[J]. arXiv:1510.03055, 2015. |
[65] | XIE Y, SVIKHNUSHINA E, PU P. A multi-turn emotionally engaging dialog model[J]. arXiv:1908.07816, 2019. |
[66] | 陈晨, 朱晴晴, 严睿, 等. 基于深度学习的开放领域对话系统研究综述[J]. 计算机学报, 2019, 42(7):1439-1466. |
CHEN C, ZHU Q Q, YAN R, et al. Survey on deep learning based open domain dialogue system[J]. Chinese Journal of Computers, 2019, 42(7):1439-1466. | |
[67] | SOHN K, LEE H, YAN X C. Learning structured output representation using deep conditional generative models[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 3483-3491. |
[68] | GU X S, XU W R, LI S. Towards automated emotional conversation generation with implicit and explicit affective strategy[C]//Proceedings of the 2019 International Symposium on Signal Processing Systems, Beijing, Sep 20-22, 2019. New York: ACM, 2019: 125-130. |
[69] |
XU W R, GU X S, CHEN G. Generating emotional controllable response based on multi-task and dual attention framework[J]. IEEE Access, 2019, 7:93734-93741.
DOI URL |
[70] | KONG X, LI B H, NEUBIG G, et al. An adversarial approach to high-quality, sentiment-controlled neural dialogue generation[J]. arXiv:1901.07129, 2019. |
[71] |
YAO K C, ZHANG L B, LUO T J, et al. Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders[J]. Neural Computing and Applications, 2021, 33(11):5581-5589.
DOI URL |
[72] | PENG D L, ZHOU M, LIU C, et al. Human-machine dialogue modelling with the fusion of word-and sentence-level emotions[J]. Knowledge-Based Systems, 2020, 192:105319. |
[73] | HUO P, YANG Y, ZHOU J, et al. TERG: topic-aware emotional response generation for chatbot[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway: IEEE, 2020: 1-8. |
[74] | DENG Z R, LIN H Q, HUANG W M, et al. Emotional dialogue generation based on conditional variational autoencoder and dual emotion framework[J]. Wireless Communications and Mobile Computing, 2020: 8881616. |
[75] | OLABIYI O, MUELLER E T. DLGNet: a Transformer-based model for dialogue response generation[J]. arXiv:1908.01841, 2019. |
[76] | SUN X, LI J, WEI X, et al. Emotional conversation generation based on a Bayesian deep neural network[J]. ACM Transactions on Information Systems, 2019, 38(1):1-24. |
[77] | LI S F, FENG S, WANG D L, et al. EmoElicitor: an open domain response generation model with user emotional reaction awareness[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 11-17, 2020: 3637-3643. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[9] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[10] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[11] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[12] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[13] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[14] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
[15] | WU Kaijun, HUANG Tao, WANG Dicong, BAI Chenshuai, TAO Xiaomiao. Research Progress of Video Anomaly Detection Technology [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/