[1] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042.
[2] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227.
CHENG K Q, ZHU Z L, DENG X M, et al. Deep learning for multi-scale object detection: a survey[J]. Journal of Software, 2021, 32(4): 1201-1227.
[3] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28(5): 1152-1164.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164.
[4] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington:IEEE Computer Society, 2017: 2980-2988.
[5] CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[7] REDMON J, FARHADI A. YOLOv3: an incremental im-provement[J]. arXiv:1804.02767, 2018.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[9] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: im-proved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-18, 2021. Piscataway: IEEE, 2021: 2778-2788.
[10] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[11] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法[J]. 计算机工程与应用, 2022, 58(17): 81-92.
WANG P F, HUANG H M, WANG M Q. Complex road target detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(17): 81-92.
[12] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer So-ciety, 2017: 936-944.
[14] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 8759-8768.
[15] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10778-10787.
[16] MA J L, CHEN B. Dual refinement feature pyramid networks for object detection[J]. arXiv:2012.01733, 2020.
[17] LUO Y H, CAO X, ZHANG J T, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022, 81(21): 30685-30704.
[18] GUO C X, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Procee-dings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12592-12601.
[19] HU L N, LI Y F. Micro-YOLO: exploring efficient methods to compress CNN based object detection model[C]//Procee-dings of the 13th International Conference on Agents and Artificial Intelligence, Feb 4-6, 2021: 151-158.
[20] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[21] 杨小冈, 高凡, 卢瑞涛, 等. 基于改进YOLOv5的轻量化航空目标检测方法[J]. 信息与控制, 2022, 51(3): 361-368.
YANG X G, GAO F, LU R T, et al. Lightweight aerial object detection method based on improved YOLOv5[J]. Information and Control, 2022, 51(3): 361-368.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 13713-13722.
[23] 汪斌斌, 杨贵军, 杨浩, 等. 基于YOLO_X和迁移学习的无人机影像玉米雄穗检测[J]. 农业工程学报, 2022, 38(15): 53-62.
WANG B B, YANG G J, YANG H, et al. UAV images for detecting maize tassel based on YOLO_X and transfer learning[J]. Transactions of the Chinese Society of Agricultural En-gineering, 2022, 38(15): 53-62.
[24] 杨蜀秦, 王帅, 王鹏飞, 等. 改进YOLOX检测单位面积麦穗[J]. 农业工程学报, 2022, 38(15): 143-149.
YANG S Q, WANG S, WANG P F, et al. Detecting wheat ears per unit area using an improved YOLOX[J]. Transac-tions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 143-149.
[25] 王燕妮, 余丽仙. 注意力与多尺度有效融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(2): 438-447.
WANG Y N, YU L X. SSD object detection algorithm with effective fusion of attention and multi-scale[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447.
[26] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation net-works[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[28] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[29] LIU J J, HOU Q B, CHENG M M, et al. Improving convo-lutional networks with self-calibrated convolutions[C]//Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10093-10102.
[30] HOU Q B, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4002-4011.
[31] 周勇, 陈思霖, 赵佳琦, 等. 基于弱语义注意力的遥感图像可解释目标检测[J]. 电子学报, 2021, 49(4): 679-689.
ZHOU Y, CHEN S L, ZHAO J Q, et al. Weakly semantic based attention network for interpretable object detection in remote sensing imagery[J]. Acta Electronica Sinica, 2021, 49(4): 679-689.
[32] 李飞, 胡坤, 张勇, 等. 基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2156-2167.
LI F, HU K, ZHANG Y, et al. Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(11): 2156-2167.
[33] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[34] ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//LNCS 12348: Proceedings of the 2020 European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 680-697.
[35] 张娜, 戚旭磊, 包晓安, 等. 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(4): 783-794.
ZHANG N, QI X L, BAO X A, et al. Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(4): 783-794.
[36] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2999-3007.
[37] YI J R, WU P X, METAXAS D N. ASSD: attentive single shot multibox detector[J]. Computer Vision and Image Un-derstanding, 2019, 189: 102827.
[38] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolu-tional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9627-9636.
[39] ZHANG S F, CHI C, YAO Y Q, el al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9756-9765.
[40] ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refine-ment neural network for object detection[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3360-3364.
[41] LI W Q, LIU G Z. A single-shot object detector with feature aggregation and enhancement[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei,China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 3910-3914. |