[1] 焦磊, 云静, 刘利民, 等. 封闭域深度学习事件抽取方法研究综述[J]. 计算机科学与探索, 2023, 17(3): 533-548.
JIAO L, YUN J, LIU L M, et al. Overview of closed-domain deep learning event extraction methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548.
[2] LOU D F, LIAO Z L, DENG S M, et al. MLBiNet: a cross-sentence collective event detection network[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4829-4839.
[3] JI H, GRISHMAN R. Refining event extraction through cross-document inference[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics, Columbus, Jun 15-20, 2008. Stroudsburg: ACL, 2008: 254-262.
[4] LIAO S S, GRISHMAN R. Using document level cross-event inference to improve event extraction[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2010: 789-797.
[5] LIN Y, JI H, HUANG F, et al. A joint neural model for information extraction with global features[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7999-8009.
[6] LIAO J Z, ZHAO X, LI X Y, et al. Learning discriminative neural representations for event detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 644-653.
[7] CHEN Y B, YANG H, LIU K, et al. Collective event detection via a hierarchical and bias tagging networks with gated multi-level attention mechanisms[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 1267-1276.
[8] 陈佳丽, 洪宇, 王捷, 等. 利用门控机制融合依存与语义信息的事件检测方法[J]. 中文信息学报, 2020, 34(8): 51-60.
CHEN J L, HONG Y, WANG J, et al. Combination of dependency and semantic information via gated mechanism for event detection[J]. Journal of Chinese Information Processing, 2020, 34(8): 51-60.
[9] DING K, XU L, LIU M, et al. Combing type-aware attention and graph convolutional networks for event detection[J]. Computers, Materials & Continua, 2022, 74(1): 641-654.
[10] JIAO X T, CHEN Z S, CHEN G Y. Event detection model based on graph attention network and graph convolutional network[C]//Proceedings of the 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2023: 322-329.
[11] WU G Q, LU Z Y, ZHUO X R, et al. Semantic fusion enhanced event detection via multi-graph attention network with skip connection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(3): 931-941.
[12] LIU X, LUO Z, HUANG H Y. Jointly multiple events extraction via attention-based graph information aggregation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 1247-1256.
[13] ZHENG S, CAO W, XU W, et al. Doc2EDAG: an end-to-end document-level framework for Chinese financial event extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg: ACL, 2019: 337-346.
[14] 王雷, 李瑞轩, 李玉华, 等. 文档级无触发词事件抽取联合模型[J]. 计算机科学与探索, 2021, 15(12): 2327-2334.
WANG L, LI R X, LI Y H, et al. Joint model for document-level event extraction without triggers[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2327-2334.
[15] VIDAKOVIC J, DOSILOVIC F K, PLUSCEC D. Abstractive summarization as augmentation for document-level event detection[EB/OL]. [2023-10-21]. https://arxiv.org/abs/2305. 18023.
[16] ZHOU J, SHUANG K, AN Z Z, et al. Improving document-level event detection with event relation graph[J]. Information Sciences, 2023, 645: 119355.
[17] YANG S, FENG D W, QIAO L B, et al. Exploring pre-trained language models for event extraction and generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5284-5294.
[18] WANG X Z, HAN X, LIU Z Y, et al. Adversarial training for weakly supervised event detection[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 998-1008.
[19] TONG M H, XU B, WANG S, et al. Improving event detection via open-domain trigger knowledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5887-5897.
[20] DENG S M, ZHANG N Y, LI L Q, et al. OntoED: low-resource event detection with ontology embedding[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2828-2839.
[21] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 3104-3112.
[22] 陆垚杰, 林鸿宇, 韩先培, 等. 基于语言学扰动的事件检测数据增强方法[J]. 中文信息学报, 2019, 33(7): 110-117.
LU Y J, LIN H Y, HAN X P, et al. Linguistic perturbation based data augmentation for event detection[J]. Journal of Chinese Information Processing, 2019, 33(7): 110-117.
[23] CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 167-176.
[24] NGUYEN T H, GRISHMAN R. Graph convolutional networks with argument-aware pooling for event detection[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2018: 5900-5907.
[25] LU Y J, LIN H Y, HAN X P, et al. Distilling discrimination and generalization knowledge for event detection via delta-representation learning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg: ACL, 2019: 4366-4376.
[26] LIU J, CHEN Y F, XU J N. Saliency as evidence: event detection with trigger saliency attribution[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 4573-4585.
[27] LING T T, CHEN L, SHENG H X, et al. Sentence-level event detection without triggers via prompt learning and machine reading comprehension[EB/OL]. [2023-10-21]. https://arxiv.org/abs/2306.14176.
[28] MHAMDI M, FREEDMAN M, MAY J. Contextualized cross-lingual event trigger extraction with minimal resources[C]//Proceedings of the 23rd Conference on Computational Natural Language Learning, Hong Kong, China, Nov 3-4, 2019. Stroudsburg: ACL, 2019: 656-665.
[29] LI Z Q, HONG Y, HE S M, et al. A mixture of experts with adaptive semantic encoding for event detection[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-7. |