[1] 张海涛, 柴思敏. 改进双分支胶囊网络的高光谱图像分类[J]. 计算机科学与探索, 2022, 16(10): 2405-2414.
ZHANG H T, CHAI S M. Improved two-branch capsule network for hyperspectral image classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2405-2414.
[2] GAO S Q. A research on traditional tangka image classification based on visual features[C]//Proceedings of the 2023 4th International Conference on Computer Vision, Image and Deep Learning. Piscataway: IEEE, 2023: 13-16.
[3] GAO Q J, QUAN Z, LI P D, et al. Multiple baggage identification algorithm based on point cloud density clustering[C]//Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE, 2018: 546-551.
[4] 葛轶洲, 许翔, 杨锁荣, 等. 序列数据的数据增强方法综述[J]. 计算机科学与探索, 2021, 15(7): 1207-1219.
GE Y Z, XU X, YANG S R, et al. Survey on sequence data augmentation[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1207-1219.
[5] YANG S R, XIAO W K, ZHANG M C, et al. Image data augmentation for deep learning: a survey[EB/OL]. [2023-09-02]. https://arxiv.org/abs/2204.08610.
[6] MUTHUMARI M, BHUVANESWARI C A, BABU J E N S K, et al. Data augmentation model for audio signal extraction[C]//Proceedings of the 2022 3rd International Conference on Electronics and Sustainable Communication Systems. Piscataway: IEEE, 2022: 334-340.
[7] 孙书魁, 范菁, 孙中强, 等. 基于深度学习的图像数据增强研究综述[J]. 计算机科学, 2024, 51(1): 150-167.
SUN S K, FAN J, SUN Z Q, et al. Survey of image data augmentation techniques based on deep learning[J]. Computer Science, 2024, 51(1): 150-167.
[8] 姜文涛, 陈霖霖, 张晟翀. 正态随机仿射变换的图像数据增强方法[J/OL]. 计算机工程与应用 [2023-11-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231008.1642.006.html.
JIANG W T, CHEN L L, ZHANG S C. Image data augmentation method for normal random affine transformation[J/OL]. Computer Engineering and Applications [2023-11-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231008.1642.006.html.
[9] CHOI H K, CHOI J, KIM H J, et al. TokenMixup: efficient attention-guided token-level data augmentation for transformers[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 14224-14235.
[10] HONG M, CHOI J, KIM G. StyleMix: separating content and style for enhanced data augmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14862-14870.
[11] YANG H, ZHOU Y. IDA-GAN: a novel imbalanced data augmentation GAN[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 8299-8305.
[12] 罗亚威, 于俊清. 可微风格搜索: 一种在线自动数据增强 方法[J]. 计算机辅助设计与图形学学报, 2023, 35(4): 553-561.
LUO Y W, YU J Q. Differentiable style search: an online automatic data augmentation method[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(4): 553-561.
[13] 朱光辉, 陈文忠, 朱振南, 等. 基于自引导进化策略的高效自动化数据增强算法[J]. 软件学报, 2024, 35(6): 3013-3035.
ZHU G H, CHEN W Z, ZHU Z N, et al. Efficient automated data augmentation algorithm based on self-guided evolution strategy[J]. Journal of Software, 2024, 35(6): 3013-3035.
[14] CUBUK E D, ZOPH B, SHLENS J, et al. RandAugment: practical automated data augmentation with a reduced search space[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3008-3017.
[15] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 13001-13008.
[16] DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with Cutout[EB/OL]. [2023-09-02]. https://arxiv.org/abs/1708.04552.
[17] SINGH K K, YU H, SARMASI A, et al. Hide-and-seek: a data augmentation technique for weakly-supervised localization and beyond[EB/OL]. [2023-09-02]. https://arxiv.org/abs/1811.02545.
[18] CHEN P, LIU S, ZHAO H, et al. GridMask data augmentation[EB/OL]. [2023-09-02]. https://arxiv.org/abs/2001.04086.
[19] LI P, LI X, LONG X, et al. FenceMask: a data augmentation approach for pre-extracted image features[EB/OL]. [2023-09-02]. https://arxiv.org/abs/2006.07877.
[20] 曾武, 朱恒亮, 邢树礼, 等. 显著性检测引导的图像数据增强方法[J]. 图学学报, 2023, 44(2): 260-270.
ZENG W, ZHU H L, XING S L, et al. Saliency detection-guided for image data augmentation[J]. Journal of Graphics, 2023, 44(2): 260-270.
[21] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
[22] NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]//Proceedings of the 2011 Neural Information Processing Systems Workshop on Deep Learning and Unsupervised Feature Learning, Granda, Dec 12-17, 2011: 4.
[23] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition.Washington: IEEE Computer Society, 2009: 248-255.
[24] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2016: 770-778.
[25] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 630-645.
[26] MA N, ZHANG X, ZHENG H T. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Procee-dings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 116-131.
[27] KAVYASHREE P S P, EI-SHARKAWY M. Compressed MobileNet V3: a light weight variant for resource-constrained platforms[C]//Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference.Piscataway: IEEE, 2021: 104-107.
[28] LIU L, JIANG H, HE P, et al. On the variance of the adaptive learning rate and beyond[EB/OL]. [2023-09-02]. https://arxiv.org/abs/1908.03265.
[29] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48.
[30] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 618-626. |