Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (12): 3126-3143.DOI: 10.3778/j.issn.1673-9418.2402004
• Frontiers·Surveys • Previous Articles Next Articles
ZHOU Qixiang, WANG Xiaoyan, ZHANG Wenkai, HE Xin
Online:
2024-12-01
Published:
2024-11-29
周启香,王晓燕,张文凯,贺鑫
ZHOU Qixiang, WANG Xiaoyan, ZHANG Wenkai, HE Xin. Application of Deep Learning in Classification and Diagnosis of Mild Cognitive Impairment[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3126-3143.
周启香, 王晓燕, 张文凯, 贺鑫. 深度学习在轻度认知障碍分类诊断中的应用[J]. 计算机科学与探索, 2024, 18(12): 3126-3143.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2402004
[1] ISLAM J, ZHANG Y. Brain MRI analysis for Alzheimer??s disease diagnosis using an ensemble system of deep convolutional neural networks[J]. Brain Informatics, 2018, 5: 1-14. [2] 李莹, 钱美齐, 邱雪. 阿尔兹海默症生物标志物和早期诊断新技术[J]. 分析测试学报, 2022, 41(4): 553-561. LI Y, QIAN M Q, QIU X. Biomarkers and early diagnostics of Alzheimer??s disease[J]. Journal of Instrumental Analysis, 2022, 41(4): 553-561. [3] 2023 Alzheimer??s disease facts and figures[J]. Alzheimers Dement, 2023, 19(4): 1598-1695. [4] 冯媛媛. 轻度认知障碍病人焦虑、抑郁的研究进展[J]. 临床医学进展, 2023, 13(2): 1795-1804. FENG Y Y. Advances in the study of anxiety and depression in patients with mild cognitive impairment[J]. Advances in Clinical Medicine, 2023, 13(2): 1795-1804. [5] GIRALDO D L, GARCIA-ARTEAGA J D, CáRDENAS-ROBLEDO S, et al. Characterization of brain anatomical patterns by comparing region intensity distributions: applications to the description of Alzheimer??s disease[J]. Brain and Behavior, 2018, 8(4): e00942. [6] TALWAR P, KUSHWAHA S, CHATURVEDI M, et al. Systematic review of different neuroimaging correlates in mild cognitive impairment and Alzheimer??s disease[J]. Clinical Neuroradiology, 2021, 31: 953-967. [7] KANG S G, CHO S E. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J]. International Journal of Molecular Sciences, 2020, 21(6): 2148. [8] PLATERO C, TOBAR M C. Predicting Alzheimer??s conversion in mild cognitive impairment patients using longitudinal neuroimaging and clinical markers[J]. Brain Imaging and Behavior, 2021, 15(4): 1728-1738. [9] 安兴伟, 周宇涛, 狄洋, 等. 功能性磁共振成像在轻度认知障碍检测诊断的研究综述[J]. 中国生物医学工程学报, 2022, 41(1): 100-107. AN X W, ZHOU Y T, DI Y, et al. Review of functional magnetic resonance imaging in diagnosis of mild cognitive impairment[J]. Chinese Journal of Biomedical Engineering, 2022, 41(1): 100-107. [10] BLANCOl K, SALCIDUA S, ORELLANA P, et al. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer??s disease[J]. Alzheime??s Research & Therapy, 2023, 15(1): 176. [11] 李晓陵, 王敬贤, 李昂, 等. 卷积神经网络在轻度认知障碍中的影像学研究进展[J]. 磁共振成像, 2021, 12(9): 88-90. LI X L, WANG J X, LI A, et al. Imaging research progress in mild cognitive impairment using convolutional neural networks[J]. Chinese Journal of Magnetic Resonance Imaging, 2021, 12(9): 88-90. [12] JACK JR C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer??s disease neuroimaging initiative (ADNI): MRI methods[J]. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2008, 27(4): 685-691. [13] MARCUS D S, WANG T H, PARKER J, et al. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults[J]. Journal of Cognitive Neuroscience, 2007, 19(9): 1498-1507. [14] BEEKLY D L, RAMOS E M, LEE W W, et al. The National Alzheimer??s Coordinating Center (NACC) database: the uniform data set[J]. Alzheimer Disease & Associated Disorders, 2007, 21(3): 249-258. [15] ELLIS K A, BUSH A I, DARBY D, et al. The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer??s disease[J]. International Psychogeriatrics, 2009, 21(4): 672-687. [16] 贾文娟, 张煜东. 自编码器理论与方法综述[J]. 计算机系统应用, 2018, 27(5): 1-9. JIA W J, ZHANG Y D. Survey on theories and methods of autoencoder[J]. Computer Systems & Applications, 2018, 27(5): 1-9. [17] 樊连玺, 刘彦北, 王雯, 等. 基于多模态表示学习的阿尔兹海默症诊断算法[J]. 计算机科学, 2021, 48(10): 107-113. FAN L X, LIU Y B, WANG W, et al. Multimodal representation learning for Alzheimer??s disease diagnosis[J]. Computer Science, 2021, 48(10): 107-113. [18] LIU Y, FAN L, ZHANG C, et al. Incomplete multi-modal representation learning for Alzheimer??s disease diagnosis[J]. Medical Image Analysis, 2021, 69: 101953. [19] SULLIVAN P F, FAN C, PEROU C M. Evaluating the comparability of gene expression in blood and brain[J]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141(3): 261-268. [20] LI S, YANG P, LANFRANCHI V. Examing and evaluating dimension reduction algorithms for classifying Alzheimer??s diseases using gene expression data[C]//Proceedings of the 2021 17th International Conference on Mobility, Sensing and Networking. Piscataway: IEEE, 2021: 687-693. [21] 刘方园, 王水花, 张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用, 2018, 54(1): 11-18. LIU F Y, WANG S H, ZHANG Y D. Survey on deep belief network model and its applications[J]. Computer Engineering and Applications, 2018, 54(1): 11-18. [22] 丁美昆, 徐昱琳, 蒋财军. 深度信念网络研究综述[J]. 工业控制计算机, 2016, 29(4): 80-81. DING M K, XU Y L, JIANG C J. Overview of deep belief network[J]. Industrial Control Computer, 2016, 29(4): 80-81. [23] SHEN T, JIANG J, LU J, et al. Predicting Alzheimer disease from mild cognitive impairment with a deep belief network based on 18F-FDG-PET images[J]. Molecular Imaging, 2019, 18. [24] ZENG N, LI H, PENG Y. A new deep belief network-based multi-task learning for diagnosis of Alzheimer??s disease[J]. Neural Computing and Applications, 2023, 35(16): 11599-11610. [25] ZHOU P, JIANG S, YU L, et al. Use of a sparse-response deep belief network and extreme learning machine to discriminate Alzheimer??s disease, mild cognitive impairment, and normal controls based on amyloid PET/MRI images[J]. Frontiers in Medicine, 2021, 7: 621204. [26] 王晋宇, 杨海涛, 李高源, 等. 生成对抗网络及其图像处理应用研究进展[J]. 计算机工程与应用, 2021, 57(8): 26-35. WANG J Y, YANG H T, LI G Y, et al. Research progress of generative adversarial network and its application in image processing[J]. Computer Engineering and Applications, 2021, 57(8): 26-35. [27] KANG W, LIN L, SUN S, et al. Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer??s disease staging[J]. Scientific Reports, 2023, 13(1): 5750. [28] JIN L, ZHAO K, ZHAN Y, et al. A hybrid deep learning method for early and late mild cognitive impairment diagnosis with incomplete multimodal data[J]. Frontiers in Neuroinformatics, 2022, 16: 843566. [29] FEI Y, ZU C, JIAO Z, et al. Classification-aided high-quality PET image synthesis via bidirectional contrastive GAN with shared information maximization[C]//Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 527-537. [30] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40 (6): 1229-1251. [31] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [32] ZHANG Y, TENG Q, LIU Y, et al. Diagnosis of Alzheimer??s disease based on regional attention with sMRI gray matter slices[J]. Journal of Neuroscience Methods, 2022, 365: 109376. [33] SUN H, WANG A, WANG W, et al. An improved deep residual network prediction model for the early diagnosis of Alzheimer’s disease[J]. Sensors, 2021, 21(12): 4182. [34] LI H, TAN Y, MIAO J, et al. Attention-based and micro designed EfficientNetB2 for diagnosis of Alzheimer??s disease[J]. Biomedical Signal Processing and Control, 2023, 82: 104571. [35] LIU Z, LU H, PAN X, et al. Diagnosis of Alzheimer??s disease via an attention-based multi-scale convolutional neural network[J]. Knowledge-Based Systems, 2022, 238: 107942. [36] HOURIA L, BELKHAMSA N, CHERFA A, et al. Multimodal magnetic resonance imaging for Alzheimer??s disease diagnosis using hybrid features extraction and ensemble support vector machines[J]. International Journal of Imaging Systems and Technology, 2023, 33(2): 610-621. [37] ZHANG F, LI Z, ZHANG B, et al. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer??s disease[J]. Neurocomputing, 2019, 361: 185-195. [38] GOLOVANEVSKY M, EICKHOFFI C, SINGH R. Multimodal attention-based deep learning for Alzheimer??s disease diagnosis[J]. Journal of the American Medical Informatics Association, 2022, 29(12): 2014-2022. [39] FAROOQ A, ANWAR S M, AWAIS M, et al. A deep CNN based multi-class classification of Alzheimer??s disease using MRI[C]//Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques. Piscataway: IEEE, 2017: 1-6. [40] KAZEMI Y, HOUGHTEN S. A deep learning pipeline to classify different stages of Alzheimer??s disease from fMRI data[C]//Proceedings of the 2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2018: 1-8. [41] WEN J, THIBEAU-SUTRE E, DIAZ-MELO M, et al. Convolutional neural networks for classification of Alzheimer??s disease: overview and reproducible evaluation[J]. Medical Image Analysis, 2020, 63: 101694. [42] 吴奇. 卷积神经网络辅助诊断阿尔兹海默症的方法[D]. 温州: 温州大学, 2022. WU Q. Convolution neural networks aided diagnosis method of Alzheimer??s disease[D]. Wenzhou: Wenzhou University, 2022. [43] Y???T A, ISIK Z. Applying deep learning models to structural MRI for stage prediction of Alzheimer??s disease[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, 28(1): 196-210. [44] FENG W, HALM-LUTTERODT N V, TANG H, et al. Automated MRI-based deep learning model for detection of Alzheimer’s disease process[J]. International Journal of Neural Systems, 2020, 30(6): 2050032. [45] HU Z Y, WU Q, JIN S, et al. Alzheimer’s disease classification based on improved 3D convolutional neural network[C]//Proceedings of the 2021 Chinese Intelligent Systems Conference: Volume I. Singapore: Springer, 2022: 1-10. [46] PEI Z, WAN Z, ZHANG Y, et al. Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer??s disease diagnosis using structural MRI[J]. Pattern Recognition, 2022, 131: 108825. [47] 蔡鸿顺, 张琼敏, 龙颖. 面向阿尔茨海默症辅助诊断的多尺度域适应网络[J]. 智能系统学报, 2023, 18(5): 1090-1098. CAI H S, ZHANG Q M, LONG Y. Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer??s disease[J]. CAAI Transactions on Intelligent Systems, 2023, 18(5): 1090-1098. [48] JACK C R, PETERSEN R C, XU Y C, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment[J]. Neurology, 1999, 52(7): 1397-1397. [49] 金悦, 沈小琪, 林岚. 基于海马MRI数据的三维DenseNet和通道注意力模块相结合的阿尔茨海默病分类模型研究[J]. 医疗卫生装备, 2023, 44(4): 9-14. JIN Y, SHEN X Q, LIN L. Construction of Alzheimer??s disease classification model based on hippocampal MRI data using 3D DenseNet and channel attention module[J]. Chinese Medical Equipment Journal, 2023, 44(4): 9-14. [50] LI A, LI F, ELAHIFASAEE F, et al. Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer??s disease diagnosis[J]. Brain Imaging and Behavior, 2021, 15: 2330-2339. [51] 魏志宏, 闫士举, 韩宝三, 等. 基于多输出的3D卷积神经网络诊断阿尔兹海默病[J]. 波谱学杂志, 2021, 38(1): 92-100. WEI Z H, YAN S J, HAN B S, et al. Diagnosis of Alzheimer??s disease based on multi-output three-dimensional convolutional neural network[J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 92-100. [52] 潘丹, 邹超, 容华斌, 等. 基于遗传算法和三维卷积神经网络集成模型的阿尔茨海默症早期辅助诊断[J]. 生物医学工程学杂志, 2021, 38(1): 47-55. PAN D, ZOU C, RONG H B, et al. Early diagnosis of Alzheimer??s disease based on three-dimensional convolutional neural networks ensemble model combined with genetic algorithm[J]. Journal of Biomedical Engineering, 2021, 38 (1): 47-55. [53] ZHANG J, ZHENG B, GAO A, et al. A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer??s disease classification[J]. Magnetic Resonance Imaging, 2021, 78: 119-126. [54] VENUGOPALAN J, TONG L, HASSANZADEH H R, et al. Multimodal deep learning models for early detection of Alzheimer??s disease stage[J]. Scientific Reports, 2021, 11(1): 3254. [55] GUAN H, WANG C, TAO D. MRI-based Alzheimer??s disease prediction via distilling the knowledge in multi-modal data[J]. NeuroImage, 2021, 244: 118586. [56] 林雪峰, 李炜. 基于深度学习的阿尔兹海默症多模态辅助诊断研究[J]. 工业控制计算机, 2020, 33(3): 58-60. LIN X F, LI W. Multi-modal data computer-aided diagnosis of AD based on deep learning model[J]. Industrial Control Computer, 2020, 33 (3): 58-60. [57] PAN X, PHAN T L, ADEL M, et al. Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 81-92. [58] KONG Z, ZHANG M, ZHU W, et al. Multi-modal data Alzheimer??s disease detection based on 3D convolution[J]. Biomedical Signal Processing and Control, 2022, 75: 103565. [59] CHEN L, QIAO H, ZHU F. Alzheimer??s disease diagnosis with brain structural MRI using multiview-slice attention and 3D convolution neural network[J]. Frontiers in Aging Neuroscience, 2022, 14: 871706. [60] CAO P, GAO J, ZHANG Z. Multi-view based multi-model learning for MCI diagnosis[J]. Brain Sciences, 2020, 10(3): 181. [61] 蒋玉英, 陈心雨, 李广明, 等. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. JIANG Y Y, CHEN X Y, LI G M, et al. Graph neural network and its research progress in field of image processing[J]. Computer Engineering and Applications, 2023, 59(7): 15-30. [62] CHEN D, ZHANG L. FE-STGNN: spatio-temporal graph neural network with functional and effective connectivity fusion for MCI diagnosis[C]//Proceedings of the 2023 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2023: 67-76. [63] 邱雅利, 朱云, 余双至, 等. 多通道稀疏图变换网络用于早期阿尔茨海默病识别[J]. 中国生物医学工程学报, 2023, 42(4): 442-452. QIU Y L, ZHU Y, YU S Z, et al. Multi-channel sparse graph transformer network for early identification of Alzheimer??s disease[J]. Chinese Journal of Biomedical Engineering, 2023, 42(4): 442-452. [64] 刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11): 2753-2768. LIU J W, SONG Z Y. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11): 2753-2768. [65] SUN H, WANG A, HE S. Temporal and spatial analysis of Alzheimer??s disease based on an improved convolutional neural network and a resting-state FMRI brain functional network[J]. International Journal of Environmental Research and Public Health, 2022, 19(8): 4508. [66] LEE G, NHO K, KANG B, et al. Predicting Alzheimer??s disease progression using multi-modal deep learning approach[J]. Scientific Reports, 2019, 9(1): 1952. [67] 石磊, 籍庆余, 陈清威, 等. 视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55. SHI L, JI Q Y, CHEN Q W, et al. Review of research on application of vision Transformer in medical image analysis[J]. Computer Engineering and Applications, 2023, 59(8): 41-55. [68] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-12-21]. https://arxiv.org/abs/2010.11929. [69] HOANG G M, KIM U H, KIM J G. Vision transformers for the prediction of mild cognitive impairment to Alzheimer??s disease progression using mid-sagittal sMRI[J]. Frontiers in Aging Neuroscience, 2023, 15: 1102869. [70] LIU L, LYU J, LIU S, et al. TriFormer: a multi-modal transformer framework for mild cognitive impairment conversion prediction[C]//Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2023: 1-4. [71] KADRI R, BOUAZIZ B, TMAR M, et al. Efficient multimodel method based on transformers and CoAtNet for Alzheimer??s diagnosis[J]. Digital Signal Processing, 2023, 143: 104229. [72] DAI Z, LIU H, LE Q V, et al. CoAtNet: marrying convolution and attention for all data sizes[C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021: 3965-3977. [73] JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer??s disease classification from magnetic resonance brain images[J]. Cognitive Systems Research, 2019, 57: 147-159. [74] KANG L, JIANG J, HUANG J, et al. Identifying early mild cognitive impairment by multi-modality MRI-based deep learning[J]. Frontiers in Aging Neuroscience, 2020, 12: 206. [75] LU P, HU L, ZHANG N, et al. A two-stage model for predicting mild cognitive impairment to Alzheimer??s disease conversion[J]. Frontiers in Aging Neuroscience, 2022, 14:826622. [76] BAE J, STOCKS J, HEYWOOD A, et al. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer??s type based on a three-dimensional convolutional neural network[J]. Neurobiology of Aging, 2021, 99: 53-64. [77] 曾安, 贾龙飞, 潘丹, 等. 基于卷积神经网络和集成学习的阿尔茨海默症早期诊断[J]. 生物医学工程学杂志, 2019, 36(5): 711-719. ZENG A, JIA L F, PAN D, et al. Early prognosis of Alzheimer??s disease based on convolutional neural networks and ensemble learning[J]. Journal of Biomedical Engineering, 2019, 36(5): 711-719. [78] HUANG Z, SUN M, GUO C. Automatic diagnosis of Alzheimer’s disease and mild cognitive impairment based on CNN+ SVM networks with end-to-end training[J]. Computational Intelligence and Neuroscience, 2021: 1-13. [79] FRANCIS A, PANDIAN I A. Ensemble learning approach for multi-class classification of Alzheimer??s stages using magnetic resonance imaging[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2023, 21(2): 374-381. [80] LI M, JIANG Y, LI X, et al. Ensemble of convolutional neural networks and multilayer perceptron for the diagnosis of mild cognitive impairment and Alzheimer??s disease[J]. Medical Physics, 2023, 50(1): 209-225. [81] LIU M, LI F, YAN H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer??s disease[J]. Neuroimage, 2020, 208: 116459. [82] XU Y, MA L, ZHANG H, et al. Double-attention assisted multi-task learning for the Alzheimer??s disease prediction from mild cognitive impairment[C]//Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2023: 1-4. [83] 杜丽君, 唐玺璐, 周娇, 等. 基于注意力机制和多任务学习的阿尔茨海默症分类[J]. 计算机科学, 2022, 49(S1): 60-65. DU L J, TANG X L, ZHOU J, et al. Alzheimer??s disease classification method based on attention mechanism and multi-task learning[J]. Computer Science, 2022, 49(S1): 60-65. [84] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 4489-4497. [85] RAVI V, EA G, KP S. Deep learning-based approach for multi-stage diagnosis of Alzheimer??s disease[J]. Multimedia Tools and Applications, 2024, 83(6): 16799-16822. [86] B?HLE M, EITEL F, WEYGANDT M, et al. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer??s disease classification[J]. Frontiers in Aging Neuroscience, 2019, 11: 194. [87] DYRBA M, HANZIG M, ALTENSTEINl S, et al. Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer??s disease[J]. Alzheimer??s Research & Therapy, 2021, 13: 1-18. [88] JIN D, ZHOU B, HAN Y, et al. Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer??s disease[J]. Advanced Science, 2020, 7(14): 2000675. [89] RIDNIK T, LAWEN H, NOY A, et al. TResNet: high performance GPU-dedicated architecture[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1400-1409. |
[1] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[2] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[3] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[4] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[5] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[6] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[7] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[8] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[9] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[10] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[11] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[12] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[13] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[14] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[15] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/