[1] ZHU Z Q, LEI Y B, QI G Q, et al. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2023, 206: 112346.
[2] FANG X, ZHENG J B, JIANG B. A rolling bearing fault diagnosis method based on vibro-acoustic data fusion and fast Fourier transform (FFT)[J/OL]. [2024-06-12]. International Journal of Data Science and Analytics. https://doi.org/10.1007/s41060-024-00609-7.
[3] ZHANG Q, DENG L F. An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network[J]. Journal of Failure Analysis and Prevention, 2023, 23(2): 795-811.
[4] CHEN X H, YANG R, XUE Y H, et al. Deep transfer learning for bearing fault diagnosis: a systematic review since 2016[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3508221.
[5] DENG Z W, WANG Z Y, TANG Z H, et al. A deep transfer learning method based on stacked autoencoder for cross-domain fault diagnosis[J]. Applied Mathematics and Computation, 2021, 408: 126318.
[6] HUANG M, YIN J H, YAN S M, et al. A fault diagnosis method of bearings based on deep transfer learning[J]. Simulation Modelling Practice and Theory, 2023, 122: 102659.
[7] HAKIM M, OMRAN A A B, AHMED A N, et al. A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: taxonomy, overview, application, open challenges, weaknesses and recommendations[J]. Ain Shams Engineering Journal, 2023, 14(4): 101945.
[8] 王智超. 基于子领域自适应的多源跨域滚动轴承故障诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
WANG Z C. Research on multi-source and cross-domain rolling bearing fault diagnosis method based on subdomain adaptation network[D]. Harbin: Harbin Institute of Technology, 2022.
[9] 杨大春, 孙宇林, 张春萌, 等. 基于改进残差网络深度子域适应的变工况滚动轴承故障诊断[J]. 轴承, 2024(8): 59-67.
YANG D C, SUN Y L, ZHANG C M, et al. Fault diagnosis method for rolling bearings under varying working conditions based on the improved residual network deep subdomain adaptation[J]. Bearing, 2024(8): 59-67.
[10] LI X, JIA X D, ZHANG W, et al. Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation[J]. Neurocomputing, 2020, 383: 235-247.
[11] FANG Z, LU J, LIU F, et al. Open set domain adaptation: theoretical bound and algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4309-4322.
[12] SAITO K, YAMAMOTO S, USHIKU Y, et al. Open set domain adaptation by backpropagation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 156-171.
[13] 蔡能. 基于开放集深度迁移学习的滚动轴承故障诊断方法研究[D]. 太原: 太原理工大学, 2023.
CAI N. Research on fault diagnosis method of rolling bearing based on open set deep transfer learning[D]. Taiyuan: Taiyuan University of Technology, 2023.
[14] LUNDGREN A, JUNG D. Data-driven fault diagnosis analysis and open-set classification of time-series data[J]. Control Engineering Practice, 2022, 121: 105006.
[15] YU X L, ZHAO Z B, ZHANG X W, et al. Deep-learning-based open set fault diagnosis by extreme value theory[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 185-196.
[16] CHEN Y, TAO L F, LIU X, et al. Open-set fault recognition and inference for rolling bearing based on open fault semantic subspace[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 3502611.
[17] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722.
[18] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 97-105.
[19] FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief review of domain adaptation[C]//Advances in Data Science and Information Engineering. Cham: Springer, 2021: 877-894.
[20] MORERIO P, VOLPI R, RAGONESI R, et al. Generative pseudo-label refinement for unsupervised domain adaptation [C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 3119-3128.
[21] WANG H J, YANG M, LIU J L, et al. Pseudo-label noise prevention, suppression and softening for unsupervised person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3222-3237.
[22] ZHAO C, SHEN W M. Dual adversarial network for cross-domain open set fault diagnosis[J]. Reliability Engineering & System Safety, 2022, 221: 108358.
[23] ZHU J, HUANG C G, SHEN C Q, et al. Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8077-8086.
[24] ZHANG W, LI X, MA H, et al. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 7957-7967.
[25] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131.
[26] LI K, PING X L, WANG H Q, et al. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis[J]. Sensors, 2013, 13(6): 8013-8041.
[27] SHAO S Y, MCALEER S, YAN R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455.
[28] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 1180-1189.
[29] SUN B C, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 443-450.
[30] LIU H, CAO Z J, LONG M S, et al. Separate to adapt: open set domain adaptation via progressive separation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2922-2931. |