
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (11): 3033-3045.DOI: 10.3778/j.issn.1673-9418.2411048
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
WANG Anran, YUAN Deyu, PAN Yuquan, JIA Yuan
Online:2025-11-01
Published:2025-10-30
王安然,袁得嵛,潘语泉,贾源
WANG Anran, YUAN Deyu, PAN Yuquan, JIA Yuan. Multi-modal Rumor Detection Model Based on Dual Attention Mechanism on Hypergraphs[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 3033-3045.
王安然, 袁得嵛, 潘语泉, 贾源. 基于超图双重注意力机制的多模态谣言检测模型[J]. 计算机科学与探索, 2025, 19(11): 3033-3045.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2411048
| [1] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. [2] NICKERSON R S. Confirmation bias: a ubiquitous phenomenon in many guises[J]. Review of General Psychology, 1998, 2(2): 175-220. [3] CINELLI M, DE FRANCISCI MORALES G, GALEAZZI A, et al. The echo chamber effect on social media[J]. Proceedings of the National Academy of Sciences of the USA, 2021, 118(9): e2023301118. [4] SHU K, SLIVA A, WANG S H, et al. Fake news detection on social media: a data mining perspective[J]. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22-36. [5] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. LIU H L, CHEN S H, CAO S J, et al. Survey of fake news detection with multi-model learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. [6] NEWMAN M L, PENNEBAKER J W, BERRY D S, et al. Lying words: predicting deception from linguistic styles[J]. Personality and Social Psychology Bulletin, 2003, 29(5): 665-675. [7] SHRESTHA A, SPEZZANO F. Textual characteristics of news title and body to detect fake news: a reproducibility study[C]//Advances in Information Retrieval: the 43rd European Conference on IR Research. Cham: Springer, 2021: 120- 133. [8] QIAN F, GONG C Y, SHARMA K, et al. Neural user response generator: fake news detection with collective user intelligence[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 3834-3840. [9] DAI Y, SHOU L J, GONG M, et al. Graph fusion network for text classification[J]. Knowledge-Based Systems, 2022, 236: 107659. [10] HAN Y, KARUNASEKERA S, LECKIE C. Graph neural networks with continual learning for fake news detection from social media[EB/OL]. [2024-09-14]. https://arxiv.org/abs/2007.03316. [11] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2915-2921. [12] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection[C]// Proceedings of the 5th IEEE International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47. [13] SINGHAL S, KABRA A, SHARMA M, et al. SpotFake+: a multimodal framework for fake news detection via transfer learning (student abstract)[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(10): 13915-13916. [14] ZHOU X Y, WU J D, ZAFARANI R. Similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining - the 24th Pacific-Asia Conference. Cham: Springer, 2020: 354-367. [15] PENG L W, JIAN S L, LI D S, et al. MRML: multimodal rumor detection by deep metric learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [16] 王震宇, 朱学芳. 基于多模态Transformer的虚假新闻检测研究[J]. 情报学报, 2023, 42(12): 1477-1486. WANG Z Y, ZHU X F. Research on fake news detection based on multimodal transformer[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(12): 1477-1486. [17] DING K Z, WANG J L, LI J D, et al. Graph prototypical networks for few-shot learning on attributed networks[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 295-304. [18] DING K Z, XU Z, TONG H H, et al. Data augmentation for deep graph learning: a survey[J]. ACM SIGKDD Explorations Newsletter, 2022, 24(2): 61-77. [19] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1025-1035. [20] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-09-14]. https://arxiv. org/abs/1710.10903. [21] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032. [22] SHU K, CUI L M, WANG S H, et al. dEFEND: explainable fake news detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 395-405. [23] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489. [24] CHENG L, GUO R C, SHU K, et al. Causal understanding of fake news dissemination on social media[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 148-157. [25] MONTI F, FRASCA F, EYNARD D, et al. Fake news detection on social media using geometric deep learning[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1902.06673. [26] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 549-556. [27] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1609.02907. [28] DOU Y T, SHU K, XIA C Y, et al. User preference-aware fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2051- 2055. [29] SHU K, MAHUDESWARAN D, WANG S H, et al. FakeNewsNet: a data repository with news content, social context, and spatiotemporal information for studying fake news on social media[J]. Big Data, 2020, 8(3): 171-188. [30] REN Y X, ZHANG J W. Fake news detection on news-oriented heterogeneous information networks through hierarchical graph attention[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. [31] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565. [32] BAI S, ZHANG F H, TORR P H S. Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637. [33] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification[EB/OL]. [2024-09-15]. https://arxiv.org/abs/2011.00387. [34] WU J Y, HOOI B. DECOR: degree-corrected social graph refinement for fake news detection[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2582-2593. [35] ZHOU D Y, HUANG J Y, SCH?LKOPF B. Learning with hypergraphs: clustering, classification, and embedding[C]//Advances in Neural Information Processing Systems 19, 2007: 1601-1608. [36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-09-15]. https://arxiv.org/abs/1810.04805. [37] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2735-2745. [38] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 3465-3476. [39] GUO Q J, KANG Z, TIAN L, et al. TieFake: title-text similarity and emotion-aware fake news detection[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-7. [40] JEONG U, DING K Z, CHENG L, et al. Nothing stands alone: relational fake news detection with hypergraph neural networks[C]//Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2023: 596-605. [41] HONNIBAL M, MONTANI I. spaCy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing[EB/OL]. [2024-09-15]. https://github.com/explosion/spaCy. [42] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 3818-3824. |
| [1] | JING Li, ZHENG Gonghao, LI Xiaohan, YU Mengyuan. Recommendation Method Based on Cross-Modal Graph Masking and Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2470-2478. |
| [2] | Anggeluma, WANG Siriguleng, SI Qintu. Overview of Research on Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2302-2318. |
| [3] | MIN Feng, LIU Yuzhuo, LIU Yuhui, LIU Biao. Multivariate Time Series Prediction Model Based on Mixed Features of Time Domain and Frequency Domain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2099-2109. |
| [4] | SHI Jiliang, ZHANG Qian, YANG Sihong, LIU Shuang, TENG Lin, BAI Wuer. Image Inpainting Guided by Image Smoothness Structure [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2149-2160. |
| [5] | LIU Guangteng, WANG Feng, WU Zhongbo. Survey on Next Point-of-Interest Recommendation Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1747-1770. |
| [6] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [7] | HAN Zhuxuan, BU Fanliang, HOU Zhiwen, QI Binting, CAO Enqi. Improved KGAT Method for Predicting Spatial Behavior of Terrorist Organizations [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1918-1930. |
| [8] | SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521. |
| [9] | CAO Yan, XIN Zihao, WU Kaijun, SHAN Hongquan, GUO Bingsen. BMTA: Inpainting of Large Area Damaged Images in Multiple Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1553-1563. |
| [10] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [11] | HU Zhongze, QIN Hongchao, LI Zhenjun, LI Yanhui, LI Ronghua, WANG Guoren. TCGCL: Complex Network Traffic Classification Algorithm Based on Graph Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1230-1240. |
| [12] | ZHANG Yumeng, ZHANG Xin, GAO Mou, ZHAO Hulin. Incorporating Dynamic Convolution and Attention Mechanism in Multilayer Perceptron for Speech Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1065-1075. |
| [13] | LIU Xianbo, XIANG Ao, DU Yanhui. Multimodal Rumor Detection Method Based on Multi-granularity Emotional Features of Image-Text [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1021-1035. |
| [14] | JIN Haibo, FENG Yujing. Social Knowledge-Aware Network Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1105-1114. |
| [15] | WEI Chuyuan, YUAN Baojie, WANG Changdong. Multi-level User Interest and Multi-intent Fusion for Next Basket Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 749-763. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/