
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (11): 3072-3082.DOI: 10.3778/j.issn.1673-9418.2507064
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
HUANG Anbo, QU Haicheng, JIANG Qingling
Online:2025-11-01
Published:2025-10-30
黄安博,曲海成,姜庆玲
HUANG Anbo, QU Haicheng, JIANG Qingling. Vulnerability Detection Method Integrating Global Graph Topology and Multi-scale Masked Convolution[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 3072-3082.
黄安博, 曲海成, 姜庆玲. 融合全局图拓扑与多尺度掩码卷积的漏洞检测方法[J]. 计算机科学与探索, 2025, 19(11): 3072-3082.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2507064
| [1] Synopsys. “2025 open source security and risk analysis”report[EB/OL]. [2025-05-09]. https://www.blackduck.com. [2] LIN G J, WEN S, HAN Q L, et al. Software vulnerability detection using deep neural networks: a survey[J]. Proceedings of the IEEE, 2020, 108(10): 1825-1848. [3] 苏小红, 郑伟宁, 蒋远, 等. 基于学习的源代码漏洞检测研究与进展[J]. 计算机学报, 2024, 47(2): 337-374. SU X H, ZHENG W N, JIANG Y, et al. Research and progress on learning-based source code vulnerability detection[J]. Chinese Journal of Computers, 2024, 47(2): 337-374. [4] ZHOU X, CAO S C, SUN X B, et al. Large language model for vulnerability detection and repair: literature review and the road ahead[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(5): 1-31. [5] SHESTOV A, LEVICHEV R, MUSSABAYEV R, et al. Finetuning large language models for vulnerability detection[J]. IEEE Access, 2025, 13: 38889-38900. [6] CHEN C, SU J Z, CHEN J C, et al. When ChatGPT meets smart contract vulnerability detection: how far are we?[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(4): 1-30. [7] PANG Y, LIU X F, HUANG T, et al. Graph-based contract sensing framework for smart contract vulnerability detection[J]. IEEE Transactions on Big Data, 2025. DOI: 10.1109/TBDATA.2025.3594303. [8] YAMAGUCHI F, GOLDE N, ARP D, et al. Modeling and discovering vulnerabilities with code property graphs[C]//Proceedings of the 2014 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2014: 590-604. [9] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [10] WEN X C, CHEN Y P, GAO C Y, et al. Vulnerability detection with graph simplification and enhanced graph representation learning[C]//Proceedings of the 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 2275-2286. [11] MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations, 2013. [12] RUSSELL R, KIM L, HAMILTON L, et al. Automated vulnerability detection in source code using deep representation learning[C]//Proceedings of the 17th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2018: 757-762. [13] YAN H, LUO S L, PAN L M, et al. HAN-BSVD: a hierarchical attention network for binary software vulnerability detection[J]. Computers & Security, 2021, 108: 102286. [14] HOVSEPYAN A, SCANDARIATO R, JOOSEN W, et al. Software vulnerability prediction using text analysis techniques[C]//Proceedings of the 4th International Workshop on Security Measurements and Metrics. New York: ACM, 2012: 7-10. [15] BROWN P F, PIETRA V J D, SOUZA P V D, et al. Class-based n-gram models of natural language[J]. Computational Linguistics, 1992, 18(4): 467-479. [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [17] MIKOLOV T, ZWEIG G. Context dependent recurrent neural network language model[C]//Proceedings of the 2012 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2012: 234-239. [18] LI Z, ZOU D Q, XU S H, et al. VulDeePecker: a deep learning-based system for vulnerability detection[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018. [19] LI Z, ZOU D Q, XU S H, et al. SySeVR: a framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244-2258. [20] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2025-05-09]. https://arxiv.org/abs/1412.3555. [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [22] TIAN J F, XING W J, LI Z. BVDetector: a program slice-based binary code vulnerability intelligent detection system[J]. Information and Software Technology, 2020, 123: 106289. [23] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734. [24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [25] TAO W X, SU X H, KE Y K, et al. Transformer-based statement level vulnerability detection by cross-modal fine-grained features capture[J]. Knowledge-Based Systems, 2025, 316: 113341. [26] HANIF H, MAFFEIS S. VulBERTa: simplified source code pre-training for vulnerability detection[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. [27] RAHMAN M M, CEKA I, MAO C Z, et al. Towards causal deep learning for vulnerability detection[C]//Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. New York: ACM, 2024: 1-11. [28] 耿辰, 常舒予, 黄海平. 零样本场景下基于提示工程的智能合约漏洞检测研究[J]. 信息对抗技术, 2024(2): 70-81. GENG C, CHANG S Y, HUANG H P. Prompt engineering for smart contract vulnerability detection in zero-shot scenarios[J]. Information Countermeasure Technology, 2024(2): 70-81. [29] DU X Y, ZHENG G, WANG K X, et al. Vul-RAG: enhancing LLM-based vulnerability detection via knowledge-level RAG[EB/OL]. [2025-05-09]. https://arxiv.org/abs/2406.11147. [30] SIOW J K, LIU S Q, XIE X F, et al. Learning program semantics with code representations: an empirical study[C]//Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2022: 554-565. [31] ZHOU Y Q, LIU S Q, SIOW J, et al. Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks[EB/OL]. [2025-05-09]. https://arxiv.org/abs/1909.03496. [32] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. [2025-05-10]. https://arxiv.org/abs/1511.05493. [33] JIANG B, ZHANG Z Y, LIN D D, et al. Semi-supervised learning with graph learning-convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11313-11320. [34] ZHENG W N, JIANG Y, SU X H. Vu1SPG: vulnerability detection based on slice property graph representation learning[C]//Proceedings of the 32nd IEEE International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 457-467. [35] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607. [36] LI M, LI C F, LI S L, et al. ACGVD: vulnerability detection based on comprehensive graph via graph neural network with attention[C]//Proceedings of the 23rd International Conference on the Information and Communications Security. Cham: Springer, 2021: 243-259. [37] LIU Z Y, ZHOU J. Graph attention networks[M]//Introduction to graph neural networks. Cham: Springer, 2020: 39-41. [38] GHAFFARIAN S M, SHAHRIARI H R. Neural software vulnerability analysis using rich intermediate graph representations of programs[J]. Information Sciences, 2021, 553: 189-207. [39] CHAKRABORTY S, KRISHNA R, DING Y, et al. Deep learning based vulnerability detection: are we there yet?[J]. IEEE Transactions on Software Engineering, 2022, 48(9): 3280-3296. [40] LING M, TANG M, BIAN D, et al. A dual graph neural networks model using sequence embedding as graph nodes for vulnerability detection[J]. Information and Software Technology, 2025, 177: 107581. |
| [1] | JING Li, ZHENG Gonghao, LI Xiaohan, YU Mengyuan. Recommendation Method Based on Cross-Modal Graph Masking and Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2470-2478. |
| [2] | Anggeluma, WANG Siriguleng, SI Qintu. Overview of Research on Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2302-2318. |
| [3] | SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521. |
| [4] | HU Zhongze, QIN Hongchao, LI Zhenjun, LI Yanhui, LI Ronghua, WANG Guoren. TCGCL: Complex Network Traffic Classification Algorithm Based on Graph Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1230-1240. |
| [5] | LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping. Review of Smart Contract Vulnerability Detection and Repair Research [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. |
| [6] | LI Kun, LI Bin, ZHU Wenjing, ZHOU Qinglei. Cross-Architecture Vulnerability Detection Combining Semantic and Attribute Feature [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 787-801. |
| [7] | WANG Anran, YUAN Deyu, PAN Yuquan, JIA Yuan. Multi-modal Rumor Detection Model Based on Dual Attention Mechanism on Hypergraphs [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 3033-3045. |
| [8] | LI Jiale, LI Leixiao, LIN Hao, DU Jinze, SHI Jianping, LIU Zhexu. Review of Hierarchical Research on Malicious Transactions in Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2559-2586. |
| [9] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
| [10] | LIU Yuan, DONG Yongquan, CHEN Cheng, JIA Rui, YIN Chan. Graph Neural Network Integrating Hot Spots and Long and Short-Term Interests for Course Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. |
| [11] | ZHAI Wenshuo, ZHAO Xiang, CHEN Dong. Source Localization of Network Information Propagation via Invertible Graph Diffusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1348-1356. |
| [12] | LI Li, SHI Rongliang, GUO Xu, JIANG Hongxin. Diagnosis of Power System Defects by Large Language Models and Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2643-2655. |
| [13] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
| [14] | JU Chengcheng, ZHU Yi. Knowledge Concept Recommendation Model for MOOCs with Local Subgraph Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 189-204. |
| [15] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/