Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2365-2376.DOI: 10.3778/j.issn.1673-9418.2101055
• Artificial Intelligence • Previous Articles Next Articles
TANG Chen, ZHAO Jieyu+(), YE Xulun, ZHENG Yang, YU Shushi
Received:
2021-01-15
Revised:
2021-03-16
Online:
2022-10-01
Published:
2021-03-25
About author:
TANG Chen, born in 1995, M.S. candidate. His research interests include graph neural networks, pattern recognition, etc.Supported by:
通讯作者:
+ E-mail: zhao_jieyu@nbu.edu.cn作者简介:
唐晨(1995—),男,安徽合肥人,硕士研究生,主要研究方向为图神经网络、模式识别等。基金资助:
CLC Number:
TANG Chen, ZHAO Jieyu, YE Xulun, ZHENG Yang, YU Shushi. Link Prediction Model for Dynamic Graphs[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2365-2376.
唐晨, 赵杰煜, 叶绪伦, 郑阳, 俞书世. 动态图的链接预测模型[J]. 计算机科学与探索, 2022, 16(10): 2365-2376.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2101055
数据集 | 节点数 | 时间序列数 |
---|---|---|
USCB | 38 | 1 000 |
SBM | 1 000 | 50 |
AS | 6 474 | 100 |
Table 1 Details of dataset
数据集 | 节点数 | 时间序列数 |
---|---|---|
USCB | 38 | 1 000 |
SBM | 1 000 | 50 |
AS | 6 474 | 100 |
配置项目 | 设置 |
---|---|
操作系统 | Windows10 64 bit |
GPU | NVIDIA GeForce RTX2080Ti |
CPU | Intel® CoreTM i5-9600K |
频率 | 3.70 GHz |
硬盘 | Samsung SSD 860 EVO 500 GB |
存储器 | 32 GB DDR4 |
编程语言及环境 | Python3.6+Pytorch1.0 |
Table 2 Experimental setup
配置项目 | 设置 |
---|---|
操作系统 | Windows10 64 bit |
GPU | NVIDIA GeForce RTX2080Ti |
CPU | Intel® CoreTM i5-9600K |
频率 | 3.70 GHz |
硬盘 | Samsung SSD 860 EVO 500 GB |
存储器 | 32 GB DDR4 |
编程语言及环境 | Python3.6+Pytorch1.0 |
Model | USCB | SBM | AS |
---|---|---|---|
GCN | 38-64 | 1 000-64 | 6 474-64 |
Discriminator1 | 64-1 | 64-1 | 64-1 |
LSTM | 64-128 | 64-128 | 64-32 |
Generator | 128-38×38 | 128-1 000×1 000 | 32-6 474×6 474 |
WSD | 64-64-10 | 64-64-10 | 64-64-10 |
Discriminator2 | 38×38-512 | 1 000×1 000-512 | 6 474×6 474-32 |
Table 3 Setting of model parameters
Model | USCB | SBM | AS |
---|---|---|---|
GCN | 38-64 | 1 000-64 | 6 474-64 |
Discriminator1 | 64-1 | 64-1 | 64-1 |
LSTM | 64-128 | 64-128 | 64-32 |
Generator | 128-38×38 | 128-1 000×1 000 | 32-6 474×6 474 |
WSD | 64-64-10 | 64-64-10 | 64-64-10 |
Discriminator2 | 38×38-512 | 1 000×1 000-512 | 6 474×6 474-32 |
Methods | AUC | MSE |
---|---|---|
GCN | 0.924 7 | 0.213 7 |
GCN-GRU | 0.940 4 | 0.113 8 |
EnvolveGCN-h | 0.969 9 | 0.057 5 |
EnvolveGCN-o | 0.936 5 | 0.199 8 |
GCN-GAN | 0.970 4 | 0.014 3 |
LPMDG* | 0.973 4 | 0.024 3 |
LPMDG | 0.989 5 | 0.012 6 |
Table 4 Prediction results of USCB
Methods | AUC | MSE |
---|---|---|
GCN | 0.924 7 | 0.213 7 |
GCN-GRU | 0.940 4 | 0.113 8 |
EnvolveGCN-h | 0.969 9 | 0.057 5 |
EnvolveGCN-o | 0.936 5 | 0.199 8 |
GCN-GAN | 0.970 4 | 0.014 3 |
LPMDG* | 0.973 4 | 0.024 3 |
LPMDG | 0.989 5 | 0.012 6 |
Methods | AUC | MSE |
---|---|---|
GCN | 0.670 0 | 0.167 9 |
GCN-GRU | 0.769 4 | 0.207 9 |
EnvolveGCN-h | 0.767 6 | 0.212 3 |
EnvolveGCN-o | 0.770 9 | 0.179 5 |
GCN-GAN | 0.888 6 | 0.027 9 |
LPMDG* | 0.941 8 | 0.015 6 |
LPMDG | 0.950 3 | 0.013 3 |
Table 5 Prediction results of SBM
Methods | AUC | MSE |
---|---|---|
GCN | 0.670 0 | 0.167 9 |
GCN-GRU | 0.769 4 | 0.207 9 |
EnvolveGCN-h | 0.767 6 | 0.212 3 |
EnvolveGCN-o | 0.770 9 | 0.179 5 |
GCN-GAN | 0.888 6 | 0.027 9 |
LPMDG* | 0.941 8 | 0.015 6 |
LPMDG | 0.950 3 | 0.013 3 |
Methods | AUC | MSE |
---|---|---|
GCN | 0.553 9 | 0.558 7 |
GCN-GRU | 0.793 9 | 0.206 2 |
EnvolveGCN-h | 0.904 1 | 0.014 1 |
EnvolveGCN-o | 0.921 8 | 0.013 4 |
GCN-GAN | 0.935 5 | 0.014 3 |
LPMDG* | 0.979 9 | 0.002 5 |
LPMDG | 0.985 3 | 0.002 0 |
Table 6 Prediction results of AS
Methods | AUC | MSE |
---|---|---|
GCN | 0.553 9 | 0.558 7 |
GCN-GRU | 0.793 9 | 0.206 2 |
EnvolveGCN-h | 0.904 1 | 0.014 1 |
EnvolveGCN-o | 0.921 8 | 0.013 4 |
GCN-GAN | 0.935 5 | 0.014 3 |
LPMDG* | 0.979 9 | 0.002 5 |
LPMDG | 0.985 3 | 0.002 0 |
[1] |
LIBEN-NOWELL D, KLEINBERG J M. The link-predic-tion problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031.
DOI URL |
[2] | JIN D, WANG X B, HE R F, et al. Robust detection of link communities in large social networks by exploiting link se-mantics[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 314-321. |
[3] |
GUO L, MA J, CHEN Z, et al. Learning to recommend with social contextual information from implicit feedback[J]. Soft Computing, 2015, 19(5): 1351-1362.
DOI URL |
[4] |
SCHAFER J B, KONSTAN J A, RIEDL J. E-commerce re-commendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153.
DOI URL |
[5] |
YU H, BRAUN P, YILDIRIM M A, et al. High-quality bi-nary protein interaction map of the yeast interactome net-work[J]. Science, 2008, 322(5898): 104-110.
DOI URL |
[6] |
STANFIELD Z, COŞKUN M, KOYUTÜRK M. Drug res-ponse prediction as a link prediction problem[J]. Scientific Reports, 2017, 7(1): 1-13.
DOI URL |
[7] | HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information es-timation and maximization[C]// Proceedings of the 7th Inter-national Conference on Learning Representations, New Or-leans, May 6-9, 2019: 06670-06694. |
[8] | VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]// Proceedings of the 7th International Con-ference on Learning Representations, New Orleans, May 6-9, 2019. |
[9] | KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations, Tou-lon, Apr 24-26, 2017: 2907-2921. |
[10] |
HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI URL |
[11] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710. |
[12] | GROVER A, LESKOVEC J.node2vec: scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[13] | NGUYEN G H, LEE J B, ROSSI R A, et al. Continuous-time dynamic network embeddings[C]// Companion Proceedings of the The Web Conference 2018, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 969-976. |
[14] | YU W C, CHENG W, AGGARWAL C C, et al. Netwalk: a flexible deep embedding approach for anomaly detection in dynamic networks[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 2672-2681. |
[15] | AHMED N M, CHEN L. An efficient algorithm for link pre-diction in temporal uncertain social networks[J]. Informa-tion Sciences, 2016, 331: 120-136. |
[16] | LI J D, DANI H, HU X, et al. Attributed network embed-ding for learning in a dynamic environment[C]// Proceedings of the 2017 ACM Conference on Information and Knowle-dge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 387-396. |
[17] | ZHU D, CUI P, ZHANG Z, et al. High-order proximity pre-served embedding for dynamic networks[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2018, 30(11): 2134-2144. |
[18] | MA X, SUN P, WANG Y. Graph regularized nonnegative ma-trix factorization for temporal link prediction in dynamic net-works[J]. Physica A: Statistical Mechanics and Its Applica-tions, 2018, 496: 121-136. |
[19] | SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Struc-tured sequence modeling with graph convolutional recurrent networks[C]// LNCS 11301: Proceedings of the 25th Interna-tional Conference on Neural Information Processing, Cam-bodia, Dec 13-16, 2018. Cham: Springer, 2018: 362-373. |
[20] | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast locali-zed spectral filtering[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845. |
[21] |
MANESSI F, ROZZA A, MANZO M. Dynamic graph con-volutional networks[J]. Pattern Recognition, 2020, 97: 107000-107016.
DOI URL |
[22] | NARAYAN A, ROE P H O N. Learning graph dynamics using deep neural networks[J]. IFAC-PapersOnLine, 2018, 51(2): 433-438. |
[23] | PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[C]// Proceedings of the 34th AAAI Conference on Artifi-cial Intelligence, the 32nd Innovative Applications of Arti-ficial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 5363-5370. |
[24] | LEI K, QIN M, BAI B, et al. GCN-GAN: a non-linear tem-poral link prediction model for weighted dynamic networks[C]// Proceedings of the 2019 IEEE Conference on Computer Communications, Paris, Apr 29-May 2, 2019. Piscataway: IEEE, 2019: 388-396. |
[25] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680. |
[26] |
LINSKER R. Self-organization in a perceptual network[J]. Computer, 1988, 21(3): 105-117.
DOI URL |
[27] | RAMACHANDRAN K N, SHERIFF I, BELDING E M, et al. Routing stability in static wireless mesh networks[C]// LNCS 4427: Proceedings of the 8th Internatinoal Conference on Passive and Active Network Measurement, Belgium, Apr 5-6, 2007. Berlin, Heidelberg: Springer, 2007: 73-82. |
[28] | GOYAL P, KAMRA N, HE X, et al. DynGEM: deep embed-ding method for dynamic graphs[J]. arXiv:1805.11273, 2018. |
[29] | LESKOVEC J, KLEINBERG J M, FALOUTSOS C. Graphs over time: densification laws, shrinking diameters and pos-sible explanations[C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Aug 21-24, 2005. New York: ACM, 2005: 177-187. |
[1] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[2] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[3] | SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438. |
[4] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[5] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[6] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[7] | LI Ximing, WU Jiarun, WU Shaoqian. GANs Based Privacy Amplification Against Bounded Adversaries [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1220-1226. |
[8] | LYU Haoyuan, YU Lu, ZHOU Xingyu, DENG Xiang. Review of Semi-supervised Deep Learning Image Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1038-1048. |
[9] | SHU Shitai, LI Song, HAO Xiaohong, ZHANG Liping. Knowledge Graph Embedding Technology: A Review [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2048-2062. |
[10] | MA Yongjie, XU Xiaodong, ZHANG Ru, XIE Yirong, CHEN Hong. Generative Adversarial Network and Its Research Progress in Image Generation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811. |
[11] | SUN Bin, JU Qingqing, SANG Qingbing. Image Dehazing Algorithm Based on FC-DenseNet and WGAN [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1380-1388. |
[12] | CHEN Qinkuang, CHEN Ke, WU Sai, SHOU Lidan, CHEN Gang. Research About Knowledge Graph Completion Based on Active Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 769-782. |
[13] | LI Guangli, HUA Jin, YUAN Tian, ZHU Tao, WU Renzhong, JI Donghong, ZHANG Hongbin. Recommendation System Based on Users' Preference Mining Generative Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 803-814. |
[14] | WU Shaoqian, LI Ximing. Survey on Research Progress of Generating Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 377-388. |
[15] | LI Junjie, WANG Qian. Perceptually Similar Image Classification Adversarial Example Generation Model [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1930-1942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/