Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2851-2859.DOI: 10.3778/j.issn.1673-9418.2104088
• Graphics and Image • Previous Articles Next Articles
Received:
2021-04-26
Revised:
2021-06-18
Online:
2022-12-01
Published:
2021-06-08
About author:
CAI Yuhong, born in 1996, M.S. candidate, member of CCF. Her research interests include pattern recognition and artificial intelligence.Supported by:
通讯作者:
+E-mail: wu_xiaojun@jiangnan.edu.cn作者简介:
蔡雨虹(1996—),女,湖南常德人,硕士研究生,CCF会员,主要研究方向为模式识别、人工智能。基金资助:
CLC Number:
CAI Yuhong, WU Xiaojun. Intra-class Low-Rank Subspace Learning for Face Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2851-2859.
蔡雨虹, 吴小俊. 用于人脸识别的类内低秩子空间学习[J]. 计算机科学与探索, 2022, 16(12): 2851-2859.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104088
算法 | 4个样本 | 6个样本 | 8个样本 | 10个样本 |
---|---|---|---|---|
DLSR[ | 81.85 | 89.66 | 92.43 | 94.60 |
ReLSR[ | 82.96 | 89.75 | 93.19 | 94.61 |
GReLSR[ | 82.54 | 89.96 | 92.98 | 94.58 |
RLR[ | 81.30 | 91.05 | 94.62 | 96.13 |
DRR[ | 81.35 | 88.70 | 94.47 | 96.14 |
RLSL[ | 82.19 | 87.50 | 92.79 | 95.61 |
CDPL[ | 80.96 | 86.64 | 90.44 | 92.35 |
LC-KSVD[ | 68.97 | 81.19 | 85.91 | 88.68 |
LCPDL[ | 61.69 | 64.17 | 79.69 | 87.71 |
ICLRSL | 84.40 | 91.60 | 94.74 | 96.39 |
Table 1 Classification accuracy of different algorithms on AR dataset
算法 | 4个样本 | 6个样本 | 8个样本 | 10个样本 |
---|---|---|---|---|
DLSR[ | 81.85 | 89.66 | 92.43 | 94.60 |
ReLSR[ | 82.96 | 89.75 | 93.19 | 94.61 |
GReLSR[ | 82.54 | 89.96 | 92.98 | 94.58 |
RLR[ | 81.30 | 91.05 | 94.62 | 96.13 |
DRR[ | 81.35 | 88.70 | 94.47 | 96.14 |
RLSL[ | 82.19 | 87.50 | 92.79 | 95.61 |
CDPL[ | 80.96 | 86.64 | 90.44 | 92.35 |
LC-KSVD[ | 68.97 | 81.19 | 85.91 | 88.68 |
LCPDL[ | 61.69 | 64.17 | 79.69 | 87.71 |
ICLRSL | 84.40 | 91.60 | 94.74 | 96.39 |
算法 | 15个样本 | 20个样本 | 25个样本 | 30个样本 |
---|---|---|---|---|
DLSR[ | 94.41 | 96.45 | 97.67 | 98.05 |
ReLSR[ | 93.98 | 96.14 | 97.75 | 98.28 |
GReLSR[ | 93.13 | 95.25 | 97.06 | 98.06 |
RLR[ | 94.79 | 96.58 | 97.92 | 98.32 |
DRR[ | 93.75 | 95.67 | 97.10 | 98.10 |
RLSL[ | 93.29 | 95.18 | 96.69 | 98.16 |
CDPL[ | 89.71 | 92.74 | 94.71 | 95.92 |
LC-KSVD[ | 93.23 | 95.11 | 96.65 | 97.23 |
LCPDL[ | 90.41 | 92.11 | 93.21 | 94.08 |
ICLRSL | 94.93 | 96.77 | 98.05 | 98.42 |
Table 2 Classification accuracy of different algorithms on Extended Yale B dataset
算法 | 15个样本 | 20个样本 | 25个样本 | 30个样本 |
---|---|---|---|---|
DLSR[ | 94.41 | 96.45 | 97.67 | 98.05 |
ReLSR[ | 93.98 | 96.14 | 97.75 | 98.28 |
GReLSR[ | 93.13 | 95.25 | 97.06 | 98.06 |
RLR[ | 94.79 | 96.58 | 97.92 | 98.32 |
DRR[ | 93.75 | 95.67 | 97.10 | 98.10 |
RLSL[ | 93.29 | 95.18 | 96.69 | 98.16 |
CDPL[ | 89.71 | 92.74 | 94.71 | 95.92 |
LC-KSVD[ | 93.23 | 95.11 | 96.65 | 97.23 |
LCPDL[ | 90.41 | 92.11 | 93.21 | 94.08 |
ICLRSL | 94.93 | 96.77 | 98.05 | 98.42 |
算法 | 10个样本 | 15个样本 | 20个样本 | 25个样本 |
---|---|---|---|---|
DLSR[ | 88.03 | 92.23 | 93.61 | 94.53 |
ReLSR[ | 87.87 | 91.62 | 93.40 | 94.65 |
GReLSR[ | 87.13 | 91.30 | 93.07 | 94.20 |
RLR[ | 89.90 | 92.28 | 93.69 | 94.66 |
DRR[ | 88.34 | 91.74 | 93.54 | 94.79 |
RLSL[ | 88.00 | 91.09 | 93.08 | 94.07 |
CDPL[ | 81.91 | 89.00 | 92.07 | 93.87 |
LC-KSVD[ | 77.83 | 81.97 | 84.15 | 85.22 |
LCPDL[ | 77.56 | 82.08 | 86.57 | 89.36 |
ICLRSL | 90.24 | 93.17 | 95.10 | 95.64 |
Table 3 Classification accuracy of different algorithms on CMU PIE dataset
算法 | 10个样本 | 15个样本 | 20个样本 | 25个样本 |
---|---|---|---|---|
DLSR[ | 88.03 | 92.23 | 93.61 | 94.53 |
ReLSR[ | 87.87 | 91.62 | 93.40 | 94.65 |
GReLSR[ | 87.13 | 91.30 | 93.07 | 94.20 |
RLR[ | 89.90 | 92.28 | 93.69 | 94.66 |
DRR[ | 88.34 | 91.74 | 93.54 | 94.79 |
RLSL[ | 88.00 | 91.09 | 93.08 | 94.07 |
CDPL[ | 81.91 | 89.00 | 92.07 | 93.87 |
LC-KSVD[ | 77.83 | 81.97 | 84.15 | 85.22 |
LCPDL[ | 77.56 | 82.08 | 86.57 | 89.36 |
ICLRSL | 90.24 | 93.17 | 95.10 | 95.64 |
算法 | 识别率 |
---|---|
DLSR[ | 92.73 |
ReLSR[ | 91.82 |
GReLSR[ | 91.91 |
RLR[ | 93.32 |
DRR[ | 94.09 |
RLSL[ | 94.18 |
CDPL[ | 86.77 |
LC-KSVD[ | 82.41 |
LCPDL[ | 92.23 |
ICLRSL | 95.27 |
Table 4 Classification accuracy of different algorithms on FRGC dataset
算法 | 识别率 |
---|---|
DLSR[ | 92.73 |
ReLSR[ | 91.82 |
GReLSR[ | 91.91 |
RLR[ | 93.32 |
DRR[ | 94.09 |
RLSL[ | 94.18 |
CDPL[ | 86.77 |
LC-KSVD[ | 82.41 |
LCPDL[ | 92.23 |
ICLRSL | 95.27 |
Algorithm | AR | Extended Yale B | CMU PIE | FRGC |
---|---|---|---|---|
LSR | 93.10 | 97.97 | 94.51 | 90.55 |
Eq. (5) | 95.90 | 97.87 | 95.32 | 94.45 |
Eq. (21) | 95.77 | 98.10 | 95.39 | 94.55 |
Eq. (22) | 96.03 | 97.96 | 95.26 | 95.18 |
ICLRSL | 96.39 | 98.42 | 95.64 | 95.27 |
Table 5 Experimental results of ablation study
Algorithm | AR | Extended Yale B | CMU PIE | FRGC |
---|---|---|---|---|
LSR | 93.10 | 97.97 | 94.51 | 90.55 |
Eq. (5) | 95.90 | 97.87 | 95.32 | 94.45 |
Eq. (21) | 95.77 | 98.10 | 95.39 | 94.55 |
Eq. (22) | 96.03 | 97.96 | 95.26 | 95.18 |
ICLRSL | 96.39 | 98.42 | 95.64 | 95.27 |
[1] |
WRIGHT J, YANG A Y, GANESHA Y, et al. Robust face re-cognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
DOI URL |
[2] | ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation: which helps face recognition?[C]// Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 471-478. |
[3] | HE X, NIYOGI P. Locality preserving projections[C]// Adv-ances in Neural Information Processing Systems 16, Van-couver and Whistler, Dec 8-13, 2003. Cambridge: MIT Press, 2004: 153-160. |
[4] | HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]// Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, Oct 17-20, 2005. Washington: IEEE Computer Society, 2005: 1208-1213. |
[5] |
XIANG S M, NIE F P, Meng G F, et al. Discriminative least squares regression for multiclass classification and feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11): 1738-1754.
DOI PMID |
[6] | WANG L, PAN C. Groupwise retargeted least-squares reg-ression[J]. IEEE Transactions on Neural Networks and Lear-ning Systems, 2018, 29(4): 1352-1358. |
[7] |
FANG X, XU Y, LI X, et al. Regularized label relaxation linear regression[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1006-1018.
DOI PMID |
[8] |
HAN N, WU J, FANG X Z, et al. Double relaxed regression for image classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(2): 307-319.
DOI URL |
[9] | CHEN Z, WU X J, KITTLER J. Low-rank discriminative least squares regression for image classification[J]. Signal Processing, 2020, 170: 107485. |
[10] |
WANG J, GUO Y, GUO J, et al. Synthesis linear classifier based analysis dictionary learning for pattern classification[J]. Neurocomputing, 2017, 238: 103-113.
DOI URL |
[11] | FANG X Z, TENG S H, LAI Z H, et al. Robust latent subspace learning for image classification[J]. IEEE Transac-tions on Neural Networks and Learning Systems, 2017, 29(6): 2502-2515. |
[12] | ZHANG Z, JIANG W M, ZHANG Z, et al. Scalable block-diagonal locality-constrained projective dictionary learning[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4376-4382. |
[13] |
MENG M, LAN M C, YU J, et al. Constrained discrimi-native projection learning for image classification[J]. IEEE Transactions on Image Processing, 2019, 29: 186-198.
DOI URL |
[14] |
RONG Y, XIONG S W, GAO Y S. Low-rank double dic-tionary learning from corrupted data for robust image classi-fication[J]. Pattern Recognition, 2017, 72: 419-432.
DOI URL |
[15] | YANG Y, SHEN H T, MA Z G, et al. l2,1-norm regularized discriminative feature selection for unsupervised learning[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1589-1594. |
[16] | BYOD S P, PARIKN N, CHU E, et al. Distributed optimi-zation and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3(1). |
[17] |
WEN J, FANG X Z, CUI J R, et al. Robust sparse linear discriminant analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(2): 390-403.
DOI URL |
[18] |
CAI J F, CANDÈS E J, SHEN Z W. A singular value thre-sholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
DOI URL |
[19] | MARTINEZ A, BENAVENTE R. The AR face database: CVC Technical Report No.24[R]. Barcelona: Universitat Au-tonoma de Barcelona, 1998. |
[20] | GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many: illumination cone models for face re-cognition under variable lighting and pose[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. |
[21] |
LEE K C, HO J, KRIEGMAN D J. Acquiring linear sub-spaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684-698.
DOI URL |
[22] |
SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618.
DOI URL |
[23] | PHILLIPS P J, FLYNN P J, SCRUGGS T, et al. Overview of the face recognition grand challenge[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 947-954. |
[24] |
ZHANG X Y, WANG L, XIANG S, et al. Retargeted least squares regression algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2206-2213.
DOI URL |
[25] |
JIANG Z L, LIN Z, DAVIS L S. Label consistent K-SVD: learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664.
DOI PMID |
[1] | YANG Jun, LEI Xiwen. Co-segmentation of 3D Point Cloud Shape Clusters Based on Weakly Supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2121-2131. |
[2] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[3] | LI Yong, GAO Can, LIU Zirong, LUO Jintao. Dynamically Consistent and Confident Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2557-2564. |
[4] | LIU Yu, MENG Min, WU Jigang. Semi-supervised Multi-view Classification via Consistency Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 242-252. |
[5] | MA Yukun, XU Yaowen, ZHAO Xin, XU Tao, WANG Zerui. Review of Presentation Attack Detection in Face Recognition System [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1195-1206. |
[6] | LI Huirong, ZHANG Lin, ZHAO Pengjun, LI Chao. Semi-supervised Concept Factorization Algorithm with Local Coordinate Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 379-388. |
[7] | YAO Xiaohong, HUANG Hengjun. Semi-supervised Clustering Method for Non-negative Functional Data [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2438-2448. |
[8] | MA Yongjie, XU Xiaodong, ZHANG Ru, XIE Yirong, CHEN Hong. Generative Adversarial Network and Its Research Progress in Image Generation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811. |
[9] | CAO Jiawei, QIAN Pengjiang. Nonnegative Matrix Factorization with Joint Regularization of Manifold Learning and Pairwise Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1211-1220. |
[10] | LIU Yingying, WANG Shitong. Novel Semi-Supervised Learning Method by Elastic-Force Theory Propagation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 606-618. |
[11] | LIU Ying, ZHU Li, LIM Kengpang, LI Yinghua, WANG Fuping, LU Jin. Review and Prospect of Image Super-Resolution Technology [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 181-199. |
[12] | ZHANG Dian, WANG Haitao, JIANG Ying, CHEN Xing. Research on Real-Time Face Recognition Algorithm Based on Lightweight Network [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 317-324. |
[13] | LIANG Junjie, WEI Jianjing, JIANG Zhengfeng. Generative Adversarial Networks GAN Overview [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 1-17. |
[14] | WANG Xiaoyu, HAN Changlin, HU Xinhao. Densely Connected Convolutional Networks Face Recognition Algorithm Based on Weighted Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1195-1205. |
[15] | GUO Wei, BAI Wenshuo, QU Haicheng. Face Recognition Algorithm of Occlusion Location Based on PCANet [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2149-2160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/