Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2841-2850.DOI: 10.3778/j.issn.1673-9418.2103030
• Graphics and Image • Previous Articles Next Articles
CAO Yiqin1, RAO Zhechu1, ZHU Zhiliang1,2,+(), ZHANG Hongbin1
Received:
2021-03-10
Revised:
2021-04-27
Online:
2022-12-01
Published:
2021-04-30
About author:
CAO Yiqin, born in 1964, M.S., professor, member of CCF. His research interests include image processing and pattern recognition.Supported by:
通讯作者:
+E-mail: rj_zzl@ecjtu.edu.cn作者简介:
曹义亲(1964—),男,江西九江人,硕士,教授,CCF会员,主要研究方向为图像处理、模式识别。基金资助:
CLC Number:
CAO Yiqin, RAO Zhechu, ZHU Zhiliang, ZHANG Hongbin. DnRFD:Progressive Residual Fusion Dense Network for Image Denoising[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2841-2850.
曹义亲, 饶哲初, 朱志亮, 张红斌. DnRFD:用于图像去噪的递进式残差融合密集网络[J]. 计算机科学与探索, 2022, 16(12): 2841-2850.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2103030
Methods | House | Pepper | Ship | Man | Landscape | Airplane | Average |
---|---|---|---|---|---|---|---|
NLM[ | 30.532 | 28.380 | 27.921 | 27.996 | 30.661 | 35.476 | 30.161 |
BM3D[ | 32.860 | 30.162 | 29.910 | 29.623 | 32.542 | 36.932 | 32.004 |
WNNM[ | 33.230 | 30.400 | 30.030 | 29.770 | 32.710 | 37.260 | 32.233 |
DnCNN[ | 32.930 | 30.660 | 30.150 | 30.030 | 33.110 | 38.270 | 32.525 |
FFDNet[ | 33.060 | 30.720 | 30.210 | 30.040 | 33.130 | 38.320 | 32.580 |
Ours | 33.083 | 30.799 | 30.222 | 30.049 | 33.198 | 38.389 | 32.623 |
Table 1 PSNR results obtained by different algorithms (noise level is 25)
Methods | House | Pepper | Ship | Man | Landscape | Airplane | Average |
---|---|---|---|---|---|---|---|
NLM[ | 30.532 | 28.380 | 27.921 | 27.996 | 30.661 | 35.476 | 30.161 |
BM3D[ | 32.860 | 30.162 | 29.910 | 29.623 | 32.542 | 36.932 | 32.004 |
WNNM[ | 33.230 | 30.400 | 30.030 | 29.770 | 32.710 | 37.260 | 32.233 |
DnCNN[ | 32.930 | 30.660 | 30.150 | 30.030 | 33.110 | 38.270 | 32.525 |
FFDNet[ | 33.060 | 30.720 | 30.210 | 30.040 | 33.130 | 38.320 | 32.580 |
Ours | 33.083 | 30.799 | 30.222 | 30.049 | 33.198 | 38.389 | 32.623 |
Methods | House | Pepper | Ship | Man | Landscape | Airplane | Average |
---|---|---|---|---|---|---|---|
NLM[ | 0.820 | 0.820 | 0.730 | 0.740 | 0.820 | 0.900 | 0.805 |
BM3D[ | 0.860 | 0.870 | 0.800 | 0.810 | 0.890 | 0.950 | 0.863 |
WNNM[ | 0.861 | 0.870 | 0.802 | 0.810 | 0.890 | 0.960 | 0.866 |
DnCNN[ | 0.961 | 0.973 | 0.951 | 0.940 | 0.960 | 0.920 | 0.951 |
FFDNet[ | 0.862 | 0.879 | 0.812 | 0.822 | 0.896 | 0.969 | 0.873 |
Ours | 0.962 | 0.976 | 0.954 | 0.942 | 0.963 | 0.940 | 0.956 |
Table 2 SSIM results obtained by different algorithms (noise level is 25)
Methods | House | Pepper | Ship | Man | Landscape | Airplane | Average |
---|---|---|---|---|---|---|---|
NLM[ | 0.820 | 0.820 | 0.730 | 0.740 | 0.820 | 0.900 | 0.805 |
BM3D[ | 0.860 | 0.870 | 0.800 | 0.810 | 0.890 | 0.950 | 0.863 |
WNNM[ | 0.861 | 0.870 | 0.802 | 0.810 | 0.890 | 0.960 | 0.866 |
DnCNN[ | 0.961 | 0.973 | 0.951 | 0.940 | 0.960 | 0.920 | 0.951 |
FFDNet[ | 0.862 | 0.879 | 0.812 | 0.822 | 0.896 | 0.969 | 0.873 |
Ours | 0.962 | 0.976 | 0.954 | 0.942 | 0.963 | 0.940 | 0.956 |
Methods | Overall mean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
House | Pepper | Mean | Ship | Man | Mean | Landscape | Airplane | Mean | ||
NLM[ | 0.051 | 0.034 | 0.043 | 0.166 | 0.157 | 0.162 | 0.080 | 0.094 | 0.087 | 0.097 |
BM3D[ | 1.000 | 0.800 | 0.900 | 3.600 | 3.600 | 3.600 | 2.200 | 2.300 | 2.250 | 2.250 |
WNNM[ | 134.925 | 131.224 | 133.075 | 552.875 | 596.001 | 574.438 | 361.181 | 323.310 | 342.246 | 349.920 |
DnCNN[ | 0.176 | 0.173 | 0.175 | 0.678 | 0.668 | 0.673 | 0.417 | 0.405 | 0.411 | 0.419 |
FFDNet[ | 0.480 | 0.336 | 0.408 | 1.107 | 0.904 | 1.006 | 0.527 | 0.499 | 0.513 | 0.642 |
Ours | 0.099 | 0.087 | 0.093 | 0.398 | 0.381 | 0.389 | 0.238 | 0.218 | 0.228 | 0.237 |
Table 3 Processing time of different algorithms (noise level is 25)
Methods | Overall mean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
House | Pepper | Mean | Ship | Man | Mean | Landscape | Airplane | Mean | ||
NLM[ | 0.051 | 0.034 | 0.043 | 0.166 | 0.157 | 0.162 | 0.080 | 0.094 | 0.087 | 0.097 |
BM3D[ | 1.000 | 0.800 | 0.900 | 3.600 | 3.600 | 3.600 | 2.200 | 2.300 | 2.250 | 2.250 |
WNNM[ | 134.925 | 131.224 | 133.075 | 552.875 | 596.001 | 574.438 | 361.181 | 323.310 | 342.246 | 349.920 |
DnCNN[ | 0.176 | 0.173 | 0.175 | 0.678 | 0.668 | 0.673 | 0.417 | 0.405 | 0.411 | 0.419 |
FFDNet[ | 0.480 | 0.336 | 0.408 | 1.107 | 0.904 | 1.006 | 0.527 | 0.499 | 0.513 | 0.642 |
Ours | 0.099 | 0.087 | 0.093 | 0.398 | 0.381 | 0.389 | 0.238 | 0.218 | 0.228 | 0.237 |
Methods | Starfish | Butterfly | Lena | Room | Desert | Coral | Average |
---|---|---|---|---|---|---|---|
NLM[ | 22.843 | 23.853 | 26.643 | 24.048 | 27.211 | 24.549 | 24.858 |
BM3D[ | 24.842 | 25.662 | 28.962 | 21.099 | 28.483 | 25.674 | 25.785 |
WNNM[ | 25.430 | 26.320 | 29.250 | 26.640 | 28.560 | 25.920 | 27.020 |
DnCNN[ | 25.703 | 26.871 | 29.435 | 26.884 | 28.833 | 26.211 | 27.323 |
FFDNet[ | 25.680 | 26.920 | 29.439 | 27.040 | 28.840 | 26.290 | 27.368 |
Ours | 25.706 | 26.932 | 29.452 | 27.094 | 28.854 | 26.303 | 27.390 |
Table 4 PSNR results obtained by different algorithms (noise level is 50)
Methods | Starfish | Butterfly | Lena | Room | Desert | Coral | Average |
---|---|---|---|---|---|---|---|
NLM[ | 22.843 | 23.853 | 26.643 | 24.048 | 27.211 | 24.549 | 24.858 |
BM3D[ | 24.842 | 25.662 | 28.962 | 21.099 | 28.483 | 25.674 | 25.785 |
WNNM[ | 25.430 | 26.320 | 29.250 | 26.640 | 28.560 | 25.920 | 27.020 |
DnCNN[ | 25.703 | 26.871 | 29.435 | 26.884 | 28.833 | 26.211 | 27.323 |
FFDNet[ | 25.680 | 26.920 | 29.439 | 27.040 | 28.840 | 26.290 | 27.368 |
Ours | 25.706 | 26.932 | 29.452 | 27.094 | 28.854 | 26.303 | 27.390 |
Methods | Starfish | Butterfly | Lena | Room | Desert | Coral | Average |
---|---|---|---|---|---|---|---|
NLM[ | 0.630 | 0.720 | 0.680 | 0.570 | 0.620 | 0.600 | 0.637 |
BM3D[ | 0.740 | 0.820 | 0.810 | 0.710 | 0.730 | 0.690 | 0.751 |
WNNM[ | 0.760 | 0.830 | 0.810 | 0.710 | 0.720 | 0.690 | 0.753 |
DnCNN[ | 0.930 | 0.950 | 0.920 | 0.900 | 0.850 | 0.910 | 0.911 |
FFDNet[ | 0.775 | 0.858 | 0.821 | 0.734 | 0.731 | 0.727 | 0.774 |
Ours | 0.932 | 0.953 | 0.921 | 0.920 | 0.860 | 0.912 | 0.916 |
Table 5 SSIM results obtained by different algorithms (noise level is 50)
Methods | Starfish | Butterfly | Lena | Room | Desert | Coral | Average |
---|---|---|---|---|---|---|---|
NLM[ | 0.630 | 0.720 | 0.680 | 0.570 | 0.620 | 0.600 | 0.637 |
BM3D[ | 0.740 | 0.820 | 0.810 | 0.710 | 0.730 | 0.690 | 0.751 |
WNNM[ | 0.760 | 0.830 | 0.810 | 0.710 | 0.720 | 0.690 | 0.753 |
DnCNN[ | 0.930 | 0.950 | 0.920 | 0.900 | 0.850 | 0.910 | 0.911 |
FFDNet[ | 0.775 | 0.858 | 0.821 | 0.734 | 0.731 | 0.727 | 0.774 |
Ours | 0.932 | 0.953 | 0.921 | 0.920 | 0.860 | 0.912 | 0.916 |
[1] |
TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: an overview[J]. Neural Networks, 2020, 131: 251-275.
DOI PMID |
[2] |
GETIS A, GRIFFITH D A. Comparative spatial filtering in regression analysis[J]. Geographical Analysis, 2002, 34(2): 130-140.
DOI URL |
[3] |
ARMSTRONG J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering[J]. Electronics Letters, 2002, 38(5): 246-247.
DOI URL |
[4] |
CANDAN C, KUTAY M A, OZAKTAS H M. The discrete fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1329-1337.
DOI URL |
[5] | BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]// Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 60-65. |
[6] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
PMID |
[7] |
KNAUS C, ZWICKER M. Progressive image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3114-3125.
PMID |
[8] | GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]// Pro-ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 2862-2869. |
[9] | 陈强, 郑钰辉, 孙权森, 等. 片相似性各项异性扩散图像去噪[J]. 计算机研究与发展, 2010, 47(1): 33-42. |
CHEN Q, ZHENG Y H, SUN Q S, et al. Patch similarity based anisotropic diffusion for image denoising[J]. Journal of Computer Research and Development, 2010, 47(1): 33-42. | |
[10] | 窦诺, 赵瑞珍, 岑翼刚, 等. 基于稀疏表示的含噪图像超分辨重建方法[J]. 计算机研究与发展, 2015, 52(4): 943-951. |
DOU N, ZHAO R Z, CEN Y G, et al. Superresolution reconstruction of noisy images based on sparse representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. | |
[11] |
王洪雁, 王拓, 潘勉, 等. 基于伽马范数最小化的图像去噪算法[J]. 通信学报, 2020, 41(10): 222-230.
DOI |
WANG H Y, WANG T, PAN M, et al. Image denoising algorithm based on gamma norm minimization[J]. Journal of Communications, 2020, 41(10): 222-230. | |
[12] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
DOI PMID |
[13] | LEFKIMMIATIS S. Universal denoising networks: a novel CNN architecture for image denoising[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3204-3213. |
[14] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[15] | HUANG G, LIU S, VAN DER MAATEN L, et al. Condensenet: an efficient densenet using learned group convolutions[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2752-2761. |
[16] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4700-4708. |
[17] | 郭恒意, 贾振堂. 结合残差密集块的卷积神经网络图像去噪方法[J]. 计算机工程与设计, 2020, 41(7): 1998-2003. |
GUO H Y, JIA Z T. Image denoising method based on convolutional neural network combined with residual-dense block[J]. Computer Engineering and Design, 2020, 41(7): 1998-2003. | |
[18] | ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image restoration[J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2021, 43(7): 2480-2495. |
[19] | 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763. |
TONG Y B, ZHANG Q S, QI Y P. Image quality evaluation model based on PSNR and SSIM[J]. Journal of Image and Graphics, 2006, 11(12): 1758-1763. | |
[20] |
HAHN J, HAUSMAN J, KUERSTEINER G. Estimation with weak instruments: accuracy of higher-order bias and MSE approximations[J]. The Econometrics Journal, 2004, 7(1): 272-306.
DOI URL |
[21] |
ZHANG K, ZUO W, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
DOI URL |
[22] | CHENG Y, LIU Z. Image denoising algorithm based on structure and texture part[C]// Proceedings of the 2016 12th International Conference on Computational Intelligence and Security, Wuxi, Dec 16-19, 2016. Piscataway: IEEE, 2016: 147-151. |
[23] | GNANADURAI D, SADASIVAM V. An efficient adaptive thresholding technique for wavelet based image denoising[J]. International Journal of Signal Processing, 2006, 2(2): 114-119. |
[1] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[2] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[3] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[4] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[5] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[6] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[7] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[8] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[9] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[10] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[11] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[12] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[13] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[14] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[15] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/