Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 898-908.DOI: 10.3778/j.issn.1673-9418.2010070
• Artificial Intelligence • Previous Articles Next Articles
MA Li, ZHENG Shiyu, NIU Bin+()
Received:
2020-10-26
Revised:
2021-01-06
Online:
2022-04-01
Published:
2021-03-12
About author:
MA Li, born in 1978, Ph.D., lecturer. Her research interests include computer vision and system on a chip.Supported by:
通讯作者:
+ E-mail: niub@lnu.edu.cn作者简介:
马利(1978—),女,辽宁锦州人,博士,讲师,主要研究方向为计算机视觉、片上系统。基金资助:
CLC Number:
MA Li, ZHENG Shiyu, NIU Bin. Action Recognition Method on Regional Association Adaptive Graph Convolution[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 898-908.
马利, 郑诗雨, 牛斌. 应用区域关联自适应图卷积的动作识别方法[J]. 计算机科学与探索, 2022, 16(4): 898-908.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010070
方法 | Top-1 | Top-5 |
---|---|---|
RA-AGCN(joint)- | 93.52 | 99.20 |
RA-AGCN(joint)- | 92.29 | 99.01 |
RA-AGCN(joint) | 94.82 | 99.37 |
Table 1 Research on effectiveness of A kand D k in adaptive graph convolution %
方法 | Top-1 | Top-5 |
---|---|---|
RA-AGCN(joint)- | 93.52 | 99.20 |
RA-AGCN(joint)- | 92.29 | 99.01 |
RA-AGCN(joint) | 94.82 | 99.37 |
方法 | Top-1 | Top-5 |
---|---|---|
AGCN(bone) | 85.98 | 97.42 |
RA-AGCN(bone) | 93.21 | 99.22 |
Table 2 Research on importance of regional association graph convolution %
方法 | Top-1 | Top-5 |
---|---|---|
AGCN(bone) | 85.98 | 97.42 |
RA-AGCN(bone) | 93.21 | 99.22 |
方法 | Top-1 | Top-5 |
---|---|---|
RA-AGCN(joint) | 94.82 | 99.37 |
RA-AGCN(bone) | 93.21 | 99.22 |
RA-AGCN | 95.62 | 99.45 |
Table 3 Research on importance of two-stream network %
方法 | Top-1 | Top-5 |
---|---|---|
RA-AGCN(joint) | 94.82 | 99.37 |
RA-AGCN(bone) | 93.21 | 99.22 |
RA-AGCN | 95.62 | 99.45 |
方法 | Top-1 | 方法 | Top-1 |
---|---|---|---|
Deep LSTM[ | 67.3 | DPRL[ | 89.8 |
ST-LSTM[ | 77.7 | AS-GCN[ | 94.2 |
TCN[ | 83.1 | 2S-AGCN[ | 95.1 |
ST-GCN[ | 88.3 | RA-AGCN | 95.6 |
Table 4 Comparison of RA-AGCN with recent methods %
方法 | Top-1 | 方法 | Top-1 |
---|---|---|---|
Deep LSTM[ | 67.3 | DPRL[ | 89.8 |
ST-LSTM[ | 77.7 | AS-GCN[ | 94.2 |
TCN[ | 83.1 | 2S-AGCN[ | 95.1 |
ST-GCN[ | 88.3 | RA-AGCN | 95.6 |
[1] | 钱慧芳, 易剑平, 付云虎. 基于深度学习的人体动作识别综述[J]. 计算机科学与探索, 2021, 15(3):438-455. |
QIAN H F, YI J P, FU Y H. Review of human action recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3):438-455. | |
[2] | 孙磊. 基于时空关系分析的监控视频下行为识别技术研究[D]. 合肥: 安徽大学, 2019. |
SUN L. Research on behavior recognition technology in surveillance video based on analysis of time and space relationship[D]. Hefei: Anhui University, 2019. | |
[3] | 李屹萌. 面向仿生机械手的表面肌电信号检测与模式识别研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LI Y M. Research on surface EMG signal detection and pattern recognition for bionic manipulator[D]. Harbin: Harbin Institute of Technology, 2019. | |
[4] | 高立青. 治安监控视频大数据中的行人行为识别方法[D]. 大连: 大连理工大学, 2017. |
GAO L Q. Pedestrian behavior identification method in public security surveillance video big data[D]. Dalian: Dalian University of Technology, 2017. | |
[5] | LI C, ZHONG Q Y, XIE D, et al. Co-occurrence feature learning from skeleton data for action recognition and detec-tion with hierarchical aggregation[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Sto-ckholm, Jul 13-19, 2018. New York: ACM, 2018: 786-792. |
[6] | YAN Y C, XU J W, NI B B, et al. Skeleton-aided articulated motion generation[C]// Proceedings of the 25th ACM on Multimedia Conference, Mountain View, Oct 23-27, 2017. New York: ACM, 2017: 199-207. |
[7] | CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1302-1310. |
[8] | DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]// Procee-dings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1110-1118. |
[9] | SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]// Pro-ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Was-hington: IEEE Computer Society, 2016: 1010-1019. |
[10] | 祁大健, 杜慧敏, 张霞, 等. 基于上下文特征融合的行为识别算法[J]. 计算机工程与应用, 2020, 56(2):171-175. |
QI D J, DU H M, ZHANG X, et al. Behavior recognition algorithm based on context feature fusion[J]. Computer En-gineering and Applications, 2020, 56(2):171-175. | |
[11] | 董旭, 谭励, 周丽娜, 等. 联合场景和行为特征的短视频行为识别[J]. 计算机科学与探索, 2020, 14(10):1754-1761. |
DONG X, TAN L, ZHOU L N, et al. Short video behavior recognition combining scene and behavior features[J]. Jou-rnal of Frontiers of Computer Science and Technology, 2020, 14(10):1754-1761. | |
[12] | SONG S J, LAN C L, XING J L, et al. An end-to-end spatio-temporal attention model for human action recognition from skeleton data[C]// Proceedings of the 31st AAAI Confe-rence on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4263-4270. |
[13] | KIM T S, REITER A. Interpretable 3D human action anal-ysis with temporal convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1623-1631. |
[14] | LIU M Y, LIU H, CHEN C. Enhanced skeleton visuali-zation for view invariant human action recognition[J]. Pat-tern Recognition, 2017, 68:346-362. |
[15] | YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recogni-tion[C]// Proceedings of the 32nd AAAI Conference on Arti-ficial Intelligence, the 30th Innovative Applications of Arti-ficial Intelligence, and the 8th AAAI Symposium on Edu-cational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7444-7452. |
[16] | TANG Y S, TIAN Y, LU J W, et al. Deep progressive rein-forcement learning for skeleton-based action recognition[C]// Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Was-hington: IEEE Computer Society, 2018: 5323-5332. |
[17] | SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action re-cognition[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 12026-12035. |
[18] | SHI L, ZHANG Y F, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7912-7921. |
[19] | THAKKAR K C, NARAYANAN P J. Part-based graph con-volutional network for action recognition[C]// Proceedings of the British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018. London: BMVA Press, 2018: 270. |
[20] | LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3595-3603. |
[21] | LI M S, CHEN S H, CHEN X, et al. Symbiotic graph neural networks for 3D skeleton-based human action recog-nition and motion prediction[J]. arXiv: 1910. 02212, 2019. |
[22] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. |
[23] | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7794-7803. |
[24] | JANG E, GU S X, POOLE B. Categorical reparameteri-zation with Gumbel-Softmax[C]// Proceedings of the 5th In-ternational Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-13. |
[25] | LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]// LNCS 9907: Proceedings of the 14th European Con-ference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 816-833. |
[1] | YANG Zheng, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. Target Tracking System Constructed by ELM-AE and Transfer Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1633-1648. |
[2] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[3] | LI Zhaoyang, LI Lin, TAO Xiaohui. Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Fore-casting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 384-394. |
[4] | SUN Wu, DENG Zhaohong, LOU Qiongdan, GU Xin, WANG Shitong. Unsupervised Heterogeneous Domain Adaptation with Fuzzy Rule Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412. |
[5] | XIAO Zeguan, CHEN Qingliang. Aspect-Based Sentiment Analysis Model with Multiple Grammatical Information [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 395-402. |
[6] | LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. |
[7] | WANG Beibei, WAN Huaiyu, GUO Shengnan, LIN Youfang. Local and Global Spatial-Temporal Networks for Traffic Accident Risk Forecasting [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1694-1702. |
[8] | HUANG Jiahui, PENG Li, XIE Linbo. Scale-Adaptive Vehicle Tracking Algorithm in UAV Scene [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1302-1309. |
[9] | JIANG Shan, DING Zhiming, XU Xinrun, YAN Jin. Graph Neural Network for Traffic Flow Situation Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1084-1091. |
[10] | SU Jiangyi, SONG Xiaoning, WU Xiaojun, YU Dongjun. Skeleton Based Action Recognition Algorithm on Multi-modal Lightweight Graph Convolutional Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 733-742. |
[11] | ZHU Fangyuan, MA Zhiqiang, CHEN Yan, ZHANG Xiaoxu, WANG Hongbin, BAO Caijilahu. Survey of Speaker Adaptation Methods in Speech Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2241-2255. |
[12] | CHEN Ziyang, LIAO Jinzhi, ZHAO Xiang, CHEN Yingguo. Incorporating Subgraph Structure Knowledge Base Question Answering via Neural Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1870-1879. |
[13] | LIN Qika, ZHANG Lingling, LIU Jun, ZHAO Tianzhe. Question-aware Graph Convolutional Network for Educational Knowledge Base Question Answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1880-1887. |
[14] | LI Changhua, CUI Liyang, LI Zhijie. Improved GCN Model for Inexact Graph Matching [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1397-1408. |
[15] | XU Peng, DENG Zhaohong, WANG Jun, WANG Shitong. Joint Information Preservation for Heterogeneous Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1183-1193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/