Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (11): 2543-2556.DOI: 10.3778/j.issn.1673-9418.2302001
• Frontiers·Surveys • Previous Articles Next Articles
HUANG Honghong, ZHANG Feng, LYU Liangfu, SI Xiaopeng
Online:
2023-11-01
Published:
2023-11-01
黄红红,张丰,吕良福,司霄鹏
HUANG Honghong, ZHANG Feng, LYU Liangfu, SI Xiaopeng. Review of Application of Neural Networks in Epileptic Seizure Prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2543-2556.
黄红红, 张丰, 吕良福, 司霄鹏. 神经网络算法在癫痫预测模型中的应用研究综述[J]. 计算机科学与探索, 2023, 17(11): 2543-2556.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2302001
[1] RASHEED K, QAYYUM A, QADIR J, et al. Machine learning for predicting epileptic seizures using EEG signals: a review[J]. IEEE Reviews in Biomedical Engineering, 2020, 14: 139-155. [2] EPMOGHADDAM D, SHETH S A, HANEEF Z, et al. Epileptic seizure prediction using spectral width of the covariance matrix[J]. Journal of Neural Engineering, 2022, 19(2): 026029. [3] LEKSHMY H O, PANICKAR D, HARIKUMAR S. Com-parative analysis of multiple machine learning algorithms for epileptic seizure prediction[J]. Journal of Physics: Con-ference Series, 2022, 2161(1): 012055. [4] NATU M, BACHUTE M, GITE S, et al. Review on epileptic seizure prediction: machine learning and deep learning approaches[J]. Computational and Mathematical Methods in Medicine, 2022: 239-244. [5] YANG J, SAWAN M. From seizure detection to smart and fully embedded seizure prediction engine: a review[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(5): 1008-1023. [6] 张晓玲. 基于深度学习和头皮脑电的癫痫发作预测研究[D]. 天津: 天津职业技术师范大学, 2022. ZHANG X L. Research on seizure prediction based on deep learning and scalp EEG[D]. Tianjin: Tianjin University of Technology and Education, 2022. [7] MESSAOUD R B, CHAVEZ M. Random forest classifier for EEG-based seizure prediction[J]. arXiv:2106.04510, 2021. [8] PINTO M F, LEAL A, LOPES F, et al. On the clinical acceptance of black-box systems for EEG seizure prediction[J]. Epilepsia Open, 2022, 7(2): 247-259. [9] TAVANAEI A, GHODRATI M, KHERADPISHEH S R, et al. Deep learning in spiking neural networks[J]. Neural Networks, 2019, 111: 47-63. [10] USMAN S M, LATIF S, BEG A. Principle components analysis for seizures prediction using wavelet transform[J]. arXiv:2004.07937, 2020. [11] DAOUD H, BAYOUMI M A. Efficient epileptic seizure prediction based on deep learning[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(5): 804-813. [12] XU Y, YANG J, SAWAN M. Multichannel synthetic preictal EEG signals to enhance the prediction of epileptic seizures[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(11): 3516-3525. [13] USMAN S M, KHALID S, AKHTAR R, et al. Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: review of available methodologies[J]. Seizure, 2019, 71: 258-269. [14] SINGH K, MALHOTRA J. Two-layer LSTM network-based prediction of epileptic seizures using EEG spectral features[J]. Complex & Intelligent Systems, 2022, 8(3): 2405-2418. [15] TRUONG N D, NGUYEN A D, KUHLMANN L, et al. Con- volutional neural networks for seizure prediction using intracranial and scalp electroencephalogram[J]. Neural Networks, 2018, 105: 104-111. [16] YUAN S, ZHOU W, CHEN L. Epileptic seizure prediction using diffusion distance and Bayesian linear discriminate analysis on intracranial EEG[J]. International Journal of Neural Systems, 2018, 28(1): 1750043. [17] DISSANAYAKE T, FERNANDO T, DENMAN S, et al. Patient-independent epileptic seizure prediction using deep learning models[J]. arXiv:2011.09581, 2020. [18] LING H, OKADA K. Diffusion distance for histogram comparison[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion, New York, Jun 17-22, 2006. Washington: IEEE Computer Society, 2006: 246-253. [19] SALAFIAN B, BEN-KNAAN E F, SHLEZINGER N, et al. CNN-aided factor graphs with estimated mutual information features for seizure detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 23-27, 2022. Piscataway: IEEE, 2022: 8677-8681. [20] GUEVARA E, FLORES-CASTRO J A, PENG K, et al. Prediction of epileptic seizures using fNIRS and machine learning[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 2055-2068. [21] YANG H, EBERLEIN M, MüLLER J, et al. Seizure prediction with long-term iEEG recordings: what can we learn from data nonstationarity?[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, Houston, Dec 9-12, 2021. Washington: IEEE Computer Society, 2021: 1-6. [22] LI C, SHAO C, SONG R, et al. Spatio-temporal MLP network for seizure prediction using EEG signals[J]. Measurement, 2023, 206: 112278. [23] KHAN H, MARCUSE L, FIELDS M, et al. Focal onset seizure prediction using convolutional networks[J]. IEEE Transactions on Biomedical Engineering, 2017, 65(9): 2109- 2118. [24] XU Y, YANG J, ZHAO S, et al. An end-to-end deep learning approach for epileptic seizure prediction[C]//Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems, Genova, Aug 31-Sep 2, 2020. Piscataway: IEEE, 2020: 266-270. [25] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53: 5455-5516. [26] WANG X, WANG X, LIU W, et al. One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG[J]. Neurocom-puting, 2021, 459: 212-222. [27] GUPTA S, RANGA V, AGRAWAL P. EpilNet: a novel approach to IoT based epileptic seizure prediction and diagnosis system using artificial intelligence[J]. arXiv:2111. 03265, 2021. [28] WANG Z, YANG J, SAWAN M. A novel multi-scale dilated 3D CNN for epileptic seizure prediction[C]//Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems, Washington, Jun 6-9, 2021. Piscataway: IEEE, 2021: 1-4. [29] HUSSEIN R, LEE S, WARD R, et al. Epileptic seizure prediction: a semi-dilated convolutional neural network architecture[C]//Proceedings of the 25th International Con-ference on Pattern Recognition, Milan, Jan 10-15, 2021. Washington: IEEE Computer Society, 2021: 5436-5443. [30] GAO Y, CHEN X, LIU A, et al. Pediatric seizure prediction in scalp EEG using a multi-scale neural network with dilated convolutions[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10: 1-9. [31] LIU C L, XIAO B, HSAIO W H, et al. Epileptic seizure prediction with multi-view convolutional neural networks[J]. IEEE Access, 2019, 7: 170352-170361. [32] TARIQ Z B, IYENGAR A, MARCUSE L, et al. Patient-specific seizure prediction using single seizure electroencephalography recording[M]//AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Cham: Springer International Publishing, 2022: 295-308. [33] LIANG D, LIU A, LI C, et al. A novel consistency-based training strategy for seizure prediction[J]. Journal of Neuro-science Methods, 2022, 372: 109557. [34] YARLAGADDA A, MALLA R M, JANAPANA H. Seizure prediction based on convolution neural network with subnet loss function[J]. International Journal of Intelligent Engineer- ing & Systems, 2022, 15(2): 126-134. [35] DAS S, PANDEY P, MIYAPURAM K P. Improving self-supervised pretraining models for epileptic seizure detection from EEG data[J]. arXiv:2207.06911, 2022. [36] RASHEED K, QADIR J, O’BRIEN T J, et al. A generative model to synthesize EEG data for epileptic seizure prediction[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2322-2332. [37] LIANG D, LIU A, WU L, et al. Semisupervised seizure prediction in scalp EEG using consistency regularization[J]. Journal of Healthcare Engineering, 2022: 1573076. [38] WU D, SHI Y, WANG Z, et al. C2SP-Net: joint compression and classification network for epilepsy seizure prediction[J]. arXiv:2110.13674, 2021. [39] LI C, LAMMIE C, DONG X, et al. Seizure detection and prediction by parallel memristive convolutional neural networks[J]. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16(4): 609-625. [40] ZHAO S, YANG J, XU Y, et al. Binary single-dimensional convolutional neural network for seizure prediction[C]// Proceedings of the 2020 IEEE International Symposium on Circuits and Systems, Sevilla, Oct 10-21, 2020. Piscataway: IEEE, 2020: 1-5. [41] AGARWAL P, WANG H C, SRINIVASAN K. Epileptic seizure prediction over EEG data using hybrid CNN-SVM model with edge computing services[C]//Proceedings of the 22nd International Conference on Circuits, Systems, Communications and Computers, Majorca, Jul 14-17, 2018. Paris: EDP Sciences, 2018: 03016. [42] 汤云琪, 郭滨, 李可欣. 基于改进的LSTM癫痫预测算法研究[J]. 长春理工大学学报(自然科学版), 2021, 44(4): 37-42. TANG Y Q, GUO B, LI K X. Research on epilepsy prediction algorithm based on improved LSTM[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(4): 37-42. [43] ALI H, KARIM F, QURESHI J J, et al. Seizure prediction using bidirectional LSTM[C]//Proceedings of the Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health: International 2019 Cyberspace Congress, CyberDI and CyberLife, Beijing, Dec 16-18, 2019. Cham: Springer, 2019: 349-356. [44] GODOY R V, REIS T J S, POLEGATO P H, et al. EEG-based epileptic seizure prediction using temporal multi-channel transformers[J]. arXiv:2209.11172, 2022. [45] HUSSEIN R, LEE S, WARD R. Multi-channel vision trans-former for epileptic seizure prediction[J]. Biomedicines, 2022, 10(7): 1551. [46] YAN J, LI J, XU H, et al. Seizure prediction based on transformer using scalp electroencephalogram[J]. Applied Sciences, 2022, 12(9): 4158. [47] HU S, LIU J, YANG R, et al. Exploring the applicability of transfer learning and feature engineering in epilepsy prediction using hybrid transformer model[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1321-1332. [48] TAHERKHANI A, BELATRECHE A, LI Y, et al. A review of learning in biologically plausible spiking neural networks[J]. Neural Networks, 2020, 122: 253-272. [49] GHOSH-DASTIDAR S, ADELI H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection[J]. Neural Networks, 2009, 22(10): 1419-1431. [50] ZARRIN P S, ZIMMER R, WENGER C, et al. Epileptic seizure detection using a neuromorphic-compatible deep spiking neural network[C]//LNCS 12108: Proceedings of the 8th International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, May 6-8, 2020. Cham: Springer, 2020: 389-394. [51] TIAN F, YANG J, ZHAO S, et al. A new neuromorphic computing approach for epileptic seizure prediction[C]// Proceedings of the 2021 IEEE International Symposium on Circuits and Systems, Daegu, May 22-28, 2021. Piscataway: IEEE, 2021: 1-5. [52] BURELO K, RAMANTANI G, INDIVERI G, et al. A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG[J]. Scientific Reports, 2022, 12(1): 1798. [53] TRUONG N D, ZHOU L, KAVEHEI O. Semi-supervised seizure prediction with generative adversarial networks[C]//Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Jul 23-27, 2019. Piscataway: IEEE, 2019: 2369-2372. [54] HOSSEINI M P, SOLTANIAN-ZADEH H, ELISEVICH K, et al. Cloud-based deep learning of big EEG data for epileptic seizure prediction[C]//Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing, Washington, Dec 7-9, 2016. Piscataway: IEEE, 2016: 1151-1155. [55] KIRAL-KORNEK I, ROY S, NURSE E, et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system[J]. EBioMedicine, 2018, 27: 103-111. [56] ZAGHLOUL Z S, BAYOUMI M. Early prediction of epilepsy seizures VLSI BCI system[J]. arXiv:1906.02894, 2019. [57] SEETHALAKSHMI V, NAVEENKUMAR P, PRABU G K, et al. A review on wearable epileptic seizure prediction system[C]//Proceedings of the 2021 International Conference on Computing, Communication, Electrical and Biomedical Systems, Coimbatore, Mar 25-26, 2021. Bristol: IOP Publishing, 2021: 012075. [58] BOROVAC A, GUDMUNDSSON S, THORVARDSSON G, et al. Ensemble learning using individual neonatal data for seizure detection[J]. arXiv:2204.07043, 2022. [59] CICHY R M, OLIVA A. A M/EEG-fMRI fusion primer: resolving human brain responses in space and time[J]. Neuron, 2020, 107(5). [60] GABEFF V, TEIJEIRO T, ZAPATER M, et al. Interpreting deep learning models for epileptic seizure detection on EEG signals[J]. Artificial Intelligence in Medicine, 2021, 117: 102084. |
[1] | WANG Bing, HUANG Gang, ZHANG Xingpeng. Research on Crisp Edge Detection with Fusion of Convolutional Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2148-2160. |
[2] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[3] | SUN Jiaze+, TANG Yanmei, WANG Shuyan. Model Robustness Optimization Method Using GAN and Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1139-1146. |
[4] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[5] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[6] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[7] | LI Jie, QU Zhong. Survey of Application of Deep Learning in Finger Vein Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2557-2579. |
[8] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[9] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[10] | WANG Zhongmin, ZHAO Yupeng, ZHENG Ronglin, HE Yan, ZHANG Jiawen, LIU Yang. Survey of Research on EEG Signal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 760-774. |
[11] | WANG Yan, LIANG Qi. Fast 3D-CNN Combined with Depth Separable Convolution for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2860-2869. |
[12] | YUAN Lining, LI Xin, WANG Xiaodong, LIU Zhao. Graph Embedding Models: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87. |
[13] | REN Longjie, SUN Ying, DING Weiping, JU Hengrong, CAO Jinxin. Multiple Lesions Detection of Fundus Images Based on CNN Algorithm Optimized by Single Population Frog-Leaping Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1762-1772. |
[14] | WU Xiaodong, LIU Jinghao, JIN Jie, MAO Siping. DNN Intrusion Detection Model Based on DT and PCA [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1450-1458. |
[15] | LI Ximing, WU Jiarun, WU Shaoqian. GANs Based Privacy Amplification Against Bounded Adversaries [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1220-1226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/