Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (12): 2840-2860.DOI: 10.3778/j.issn.1673-9418.2303026
• Frontiers·Surveys • Previous Articles Next Articles
MENG Xiangfu, HUO Hongjin, ZHANG Xiaoyan, WANG Wanchun, ZHU Jinxia
Online:
2023-12-01
Published:
2023-12-01
孟祥福,霍红锦,张霄雁,王琬淳,朱金侠
MENG Xiangfu, HUO Hongjin, ZHANG Xiaoyan, WANG Wanchun, ZHU Jinxia. Survey of Research on Personalized News Recommendation Approaches[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2840-2860.
孟祥福, 霍红锦, 张霄雁, 王琬淳, 朱金侠. 个性化新闻推荐方法研究综述[J]. 计算机科学与探索, 2023, 17(12): 2840-2860.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2303026
[1] LI M M, WANG L C. A survey on personalized news recom-mendation technology[J]. IEEE Access, 2019, 7: 145861-145879. [2] DONG Y, LIU S, CHAI J P. Research of hybrid collaborative filtering algorithm based on news recommendation[C]//Pro-ceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Datong, Oct 15-17, 2016. Piscataway: IEEE, 2016: 898-902. [3] WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, Aug 21-24, 2011. New York: ACM, 2011: 448-456. [4] OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 1933-1942. [5] LIU J H, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//Proceedings of the 15th International Conference on Intelligent User Inter-faces, Hong Kong, China, Feb 7-10, 2010. New York: ACM, 2010: 31-40. [6] BANSAL T, DAS M, BHATTACHARYYA C. Content driven user profiling for comment-worthy recommendations of news and blog articles[C]//Proceedings of the 9th ACM Confe-rence on Recommender Systems, Vienna, Sep 16-20, 2015. New York: ACM, 2015: 195-202. [7] LU Z, DOU Z, LIAN J, et al. Content-based collaborative filtering for news topic recommendation[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 217-223. [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436. [9] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. [10] 余力, 杜启翰, 岳博妍, 等. 基于强化学习的推荐研究综述[J]. 计算机科学, 2021, 48(10): 1-18. YU L, DU Q H, YUE B Y, et al. Survey of reinforcement learning based recommender systems[J]. Computer Science, 2021, 48(10): 1-18. [11] 田萱, 丁琪, 廖子慧, 等. 基于深度学习的新闻推荐算法研究综述[J]. 计算机科学与探索, 2021, 15(6): 971-998. TIAN X, DING Q, LIAO Z H, et al. Survey on deep lear-ning based news recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. [12] 王绍卿, 李鑫鑫, 孙福振, 等. 个性化新闻推荐技术研究综述[J]. 计算机科学与探索, 2020, 14(1): 18-29. WANG S Q, LI X X, SUN F Z, et al. Survey of research on personalized news recommendation techniques[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 18-29. [13] 孟祥武, 陈诚, 张玉洁. 移动新闻推荐技术及其应用研究综述[J]. 计算机学报, 2016, 39(4): 685-703. MENG X W, CHEN C, ZHANG Y J. A survey of mobile news recommend techniques and applications[J]. Chinese Journal of Computers, 2016, 39(4): 685-703. [14] LIU R, PENG H, CHEN Y, et al. HyperNews: simultaneous news recommendation and active-time prediction via a double-task deep neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 11-17, 2020: 3487-3493. [15] 袁仁进, 陈刚. 顾及事件地理位置的新闻推荐方法研究[J]. 计算机科学, 2018, 45(S2): 462-467. YUAN R J, CHEN G. Research on news recommendation methods considering geographical location of news[J]. Computer Science, 2018, 45(S2): 462-467. [16] CHEN C, THOMAS L, MENG X, et al. Location-aware news recommendation using deep localized semantic analysis[C]//LNCS 10177: Proceedings of the 22nd International Conference on Database Systems for Advanced Applications, Suzhou, Mar 27-30, 2017. Cham: Springer, 2017: 507-524. [17] XU W, CHOW C Y, YIU M L, et al. MobiFeed: a location-aware news feed framework for moving users[J]. GeoInfor-matica, 2015, 19(3): 633-669. [18] SARAVANAPRIYA M, SENTHILKUMAR R, SAKTHEE SWARAN J. Multi-label convolution neural network for personalized news recommendation based on social media mining[J]. Journal of Scientific and Industrial Research, 2022, 81(7): 785-797. [19] ASHRAF M, TAHIR G A, ABRAR S. Personalized news recommendation based on multi-agent framework using social media preferences[C]//Proceedings of the 2018 International Conference on Smart Computing and Electronic Enterprise, Shah Alam, Jul 11-12, 2018. Piscataway: IEEE, 2018: 1-7. [20] YANG J, WAN J, WANG Y, et al. Social network-based news recommendation with knowledge graph[C]//Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, Chongqing, Nov 6-8, 2020. Piscataway: IEEE, 2020: 1255-1260. [21] MOREIRA G, JANNACH D, CUNHA A. Contextual hybrid session-based news recommendation with recurrent neural networks[J]. IEEE Access, 2019, 7: 169185-169203. [22] MENG L, SHI C. A context-aware interest drift network for session-based news recommendations[C]//Proceedings of the IEEE 6th International Conference on Computer and Commu-nications, Chengdu, Dec 11-14, 2020. Piscataway: IEEE, 2020: 1967-1971. [23] SHEU H S, LI S. Context-aware graph embedding for session-based news recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 657-662. [24] GUO N, FU Z P, ZHAO Q H. Multimodal news recommen-dation based on deep reinforcement learning[C]//Proceedings of the 2022 International Conference on Intelligent Compu-ting and Signal Processing, Xi??an, Apr 15-17, 2022. New York: IEEE, 2022: 279-284. [25] WU C, WU F, QI T, et al. MM-Rec: visiolinguistic model empowered multimodal news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2560-2564. [26] XUN J H, ZHANG S Y, ZHAO Z, et al. Why do we click: visual impression-aware news recommendation[C]//Proceedings of the 2021 ACM Multimedia Conference, Oct 20-24, 2021. New York: ACM, 2021: 3881-3890. [27] WU C H, WU F, QI T, et al. End-to-end learnable diversity-aware news recommendation[J]. arXiv:2204.00539, 2022. [28] WU CH, WU F, QI T, et al. SentiRec: sentiment diversity-aware neural news recommendation[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Associa-tion for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, Suzhou, Dec 4-7, 2020. Stroudsburg: ACL, 2020: 44-53. [29] QIN Z, ZHANG M. Research on news recommendation algorithm based on user interest and timeliness modeling[C]//Proceedings of the 2nd International Conference on Computing and Data Science, Stanford, Jan 28-30, 2021. New York: ACM, 2021: 1-6. [30] WANG J, CHEN Y, WANG Z, et al. Popularity-enhanced news recommendation with multi-view interest representation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 1949-1958. [31] QI T, WU F, WU C, et al. PP-Rec: news recommendation with personalized user interest and time-aware news popu-larity[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5457-5467. [32] ZHU Q N, ZHOU X F, SONG Z L, et al. DAN: deep atten-tion neural network for news recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5973-5980. [33] AN M X, WU F Z, WU C H, et al. Neural news recom-mendation with long- and short-term user representations[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 336-345. [34] MENG L K, SHI C Y, HAO S F, et al. DCAN: deep co-attention network by modeling user preference and news lifecycle for news recommendation[C]//Proceedings of the 5th International Conference on Big Data Technologies, Qingdao, Sep 23-25, 2022. New York: ACM, 2021: 100-114. [35] WU C H, WU F Z, GE S Y, et al. Neural news recommen-dation with multi-head self-attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6388-6393. [36] WU C H, WU F Z, AN M X, et al. NPA: neural news recom-mendation with personalized attention[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2576-2584. [37] WU C H, WU F Z, QI T, et al. Two birds with one stone: unified model learning for both recall and ranking in news recommendation[C]//Findings of the Association for Compu-tational Linguistics, Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 3474-3480. [38] WU C H, WU F Z, AN M X, et al. Neural news recom-mendation with attentive multi-view learning[C]//Proceedings of the 28th International Joint Conference on Artificial Inte-lligence, Macao, China, Aug 10-16, 2019: 3863-3869. [39] WU C H, WU F Z, QI T, et al. User modeling with click preference and reading satisfaction for news recommenda-tion[C]//Proceedings of the 29h International Joint Confe-rence on Artificial Intelligence, Yokohama, Jan 7-15, 2020: 3023-3029. [40] DEVLIN J, CHANG M W, LEE K. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North Ame-rican Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [41] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Annual Confe-rence on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. [42] WU C H, WU F Z, Q I T, et al. Empowering news recom-mendation with pre-trained language models[C]//Proceedings of the 44th International ACM SIGIR Conference on Rese-arch and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1652-1656. [43] JIA Q L, LI J J, ZHANG Q, et al. RMBERT: news recom-mendation via recurrent reasoning memory network over BERT[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1773-1777. [44] ZHANG Q, LI J J, JIA Q L, et al. UNBERT: user-news matching BERT for news recommendation[C]//Proceedings of the 30th International Joint Conference on Artificial Inte-lligence, Montreal, Aug 19-27, 2021: 3356-3362. [45] HUANG J S, HAN Z B, XU H Y, et al. Adapted transfor-mer network for news recommendation[J]. Neurocomputing, 2022, 469: 119-129. [46] BI Q W, LI J, SHANG L F, et al. MTRec: multi-task lear-ning over BERT for news recommendation[C]//Proceedings of the 60th Annual Meeting of the Association-for-Compu-tational-Linguistics, Ireland, May 22-27, 2022. Stroudsburg: ACL, 2022: 2663-2669. [47] ZHANG Q, JIA Q L, WANG C Y, et al. AMM: attentive multi-field matching for news recommendation[C]//Procee-dings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 1588-1592. [48] KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation[C]//Proceedings of the Working Notes of CLEF 2017-Conference and Labs of the Evaluation Forum, Dublin, Sep 11-14, 2017: 1-19. [49] REN L, CHEN D H, MIAO Z X, et al. News recommendation model based on long-term and short-term interests[C]//Proceedings of the 5th International Conference on Big Data Technologies, Qingdao, Sep 23-25, 2022. New York: ACM, 2022: 183-189. [50] WU C H, WU F Z, AN M X, et al. Neural news recommen-dation with heterogeneous user behavior[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Con-ference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4873-4882. [51] WU C H, WU F Z, QI T, et al FeedRec: news feed recom-mendation with various user feedbacks[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 2088-2097. [52] WU C H, WU F Z, HUANG Y F, et al. Neural news recom-mendation with negative feedback[J]. CCF Transactions on Pervasive Computing and Interaction, 2020, 2(3): 178-188. [53] GONG S, ZHU K Q. Positive, negative and neutral: modeling implicit feedback in session-based news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1185-1195. [54] HU Y F, QIU Z P, WU X. Denoising neural network for news recommendation with positive and negative implicit feedback[C]//Findings of the Association for Computational Linguistics, Seattle, Jul 10-15, 2022. Stroudsburg: ACL, 2022: 2320-2329. [55] QI T, WU F Z, WU C H, et al. FUM: fine-grained and fast user modeling for news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1974-1978. [56] GE S, WU C, WU F. Graph enhanced representation learning for news recommendation[C]//Proceedings of the Web Con-ference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2863-2869. [57] HU L, XU S, LI C, et al. Graph neural news recommen-dation with unsupervised preference disentanglement[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4255-4264. [58] HU L, LI C, SHI C. Graph neural news recommendation with long-term and short-term interest modeling[J]. Infor-mation Processing and Management, 2020, 57(2): 102142. [59] JI Z, WU M, YANG H. Temporal sensitive heterogeneous graph neural network for news recommendation[J]. Future Generation Computer Systems, 2021, 125: 324-333. [60] WU C H, WU F Z, HUANG Y F, et al. User-as-Graph: user modeling with heterogeneous graph pooling for news recom-mendation[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021: 1624-1630. [61] MAO Z, LI J Y, WANG H, et al. DIGAT: modeling news recommendation with dual-graph interaction[C]//Findings of the Association for Computational Linguistics, Abu Dhabi, Dec 7-11, 2022. Stroudsburg: ACL, 2022: 6595-6607. [62] MA M, NA S, WANG H. The graph-based behavior-aware recommendation for interactive news[J]. Applied Intelligence, 2022, 52(2): 1913-1929. [63] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. [64] REN Y, WANG X, PANG G, et al. Dual attention network based on knowledge graph for news recommendation[C]//LNCS 12937: Proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, Nanjing, Jun 25-27, 2021.Cham: Springer, 2021: 364-375. [65] LEE D, OH B, SEO S. News recommendation with topic-enriched knowledge graphs[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 695-704. [66] SUN Y, YI F, ZENG C, et al. A hybrid approach to news recommendation based on knowledge graph and long short-term user preferences[C]//Proceedings of the 2021 IEEE International Conference on Services Computing, Chicago, Sep 5-10, 2021. Piscataway: IEEE, 2021: 165-173. [67] XU Y, CHEN B, ZHEN J, et al. NRKM: news recommenda-tion based on knowledge graph with multi-view learning[C]//Proceedings of the 3rd International Conference on Control, Robotics and Intelligent System, Aug 26-28, 2022. New York: ACM, 2022: 123-127. [68] QI T, WU F, WU C, et al. Personalized news recommen-dation with knowledge-aware interactive matching[C]//Pro-ceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 61-70. [69] QIU Z, HU Y, WU X. Graph neural news recommendation with user existing and potential interest modeling[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(5): 1-17. [70] TIAN Y, YANG Y, REN X, et al. Joint knowledge pruning and recurrent graph convolution for news recommendation[C]//Proceedings of the 44th International ACM SIGIR Con-ference on Research and Development in Information Ret-rieval, Jul 11-15, 2021. New York: ACM, 2021: 51-60. [71] ZHU P, CHENG D, LUO S, et al. Si-News: integrating social information for news recommendation with attention-based graph convolutional network[J]. Neurocomputing, 2022, 494: 33-42. [72] GULLA J A, ZHANG L, PENG L, et al. The Adressa dataset for news recommendation[C]//Proceedings of the 2017 Inter-national Conference on Web Intelligence, Leipzig, Aug 23-26, 2017. New York: ACM, 2017: 1042-1048. [73] LERMAN K, GHOSH R. Information Contagion: an empirical study of the spread of news on Digg and Twitter social networks[C]//Proceedings of the 4th International Conference on Weblogs and Social Media, Washington, May 23-26, 2010. Menlo Park: AAAI, 2010: 166-176. [74] KILLE B, HOPFGARTNER F, BRODT T, et al. The Plista dataset[C]//Proceedings of the 2013 International News Recom-mender Systems Workshop and Challenge, Hong Kong, China, Oct 13, 2013. New York: ACM, 2013: 16-23. [75] WU F Z, QIAO Y, CHEN J H, et al. MIND: a large-scale dataset for news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3597-3606. [76] GABRILOVICH E, DUMAIS S T, HORVITZ E. Newsjunkie: providing personalized news feeds via analysis of information novelty[C]//Proceedings of the 2004 International Conference on World Wide Web, New York, May 17-20, 2004. New York: ACM, 2004: 482-490. [77] ZHENG G, ZHANG F, ZHENG Z, et al. DRN: a deep rein-forcement learning framework for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 167-176. [78] WU C, WU F, WANG X, et al. Fairness-aware news recom-mendation with decomposed adversarial learning[C]//Pro-ceedings of the 35th AAAI Conference on Artificial Intelli-gence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 4462-4469. [79] WANG H W, ZHANG F Z, WANG J, et al. RippleNet: pro-pagating user preferences on the knowledge graph for recom-mender systems[C]//Proceedings of the 27th ACM Inter-national Conference on Information and Knowledge Mana-gement, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. [80] TAO Q, WU F Z, WU C H, et al. HieRec: hierarchical user interest modeling for personalized news recommendation[C]//Proceedings of the 59th Annual Meeting of the Asso-ciation for Computational Linguistics and the 11th Interna-tional Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5446-5456. [81] QI T, WU F, WU C, et al. Uni-FedRec: a unified privacy-preserving news recommendation framework for model trai-ning and online serving[C]//Findings of the Association for Computational Linguistics, Punta Cana, Nov 16-20, 2021. Stroudsburg: ACL, 2021: 1438-1448. [82] YI J, WU F, WU C, et al. Efficient-FedRec: efficient fede-rated learning framework for privacy-preserving news recom-mendation[C]//Proceedings of the 2021 Conference on Empi-rical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 2814-2824. |
[1] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[2] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[3] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[4] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[5] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[6] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[7] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[8] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[9] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[10] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
[11] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
[12] | WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57. |
[13] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[14] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[15] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/