Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (6): 1225-1248.DOI: 10.3778/j.issn.1673-9418.2210114
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei
Online:
2023-06-01
Published:
2023-06-01
张如琳,王海龙,柳林,裴冬梅
ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248.
张如琳, 王海龙, 柳林, 裴冬梅. 音乐自动标注分类方法研究综述[J]. 计算机科学与探索, 2023, 17(6): 1225-1248.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2210114
[1] 李伟, 李子晋, 高永伟. 理解数字音乐——音乐信息检索技术综述[J]. 复旦学报(自然科学版), 2018, 57(3): 271-313. LI W, LI Z J, GAO Y W. Understanding digital music—a review of music information retrieval technology[J]. Journal of Fudan University (Natural Science), 2018, 57(3): 271-313. [2] 李伟, 高智辉. 音乐信息检索技术: 音乐与人工智能的融合[J]. 艺术探索, 2018, 32(5): 112-116. LI W, GAO Z H. Music information retrieval technology: fusion of music and artificial intelligence[J]. Arts Exploration, 2018, 32(5): 112-116. [3] ECK D, LAMERE P, BERTIN-MAHIEUX T, et al. Automatic generation of social tags for music recommendation[C]//Advances in Neural Information Processing Systems 20: Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, Dec 3-6, 2007: 385-392. [4] FU Z, LU G, TING K M, et al. A survey of audio-based music classification and annotation[J]. IEEE Transactions on Multimedia, 2010, 13(2): 303-319. [5] SONG Y, ZHUANG Z, LI H, et al. Real-time automatic tag recommendation[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, Jul 20-24, 2008. New York: ACM, 2008: 515-522. [6] NAM J, HERRERA J, LEE K. A deep bag-of-features model for music auto-tagging[J]. arXiv:1508.04999, 2015. [7] BERTIN-MAHIEUX T, ECK D, MANDEL M. Automatic tagging of audio: the state-of-the-art[M]//Machine Audition: Principles, Algorithms and Systems. Hershey: IGI Global, 2011: 334-352. [8] GONÇALVES T, QUARESMA P. A preliminary approach to the multilabel classification problem of portuguese juridical documents[C]//LNCS 2902: Proceedings of the 11th Portuguese Conference on Artificial Intelligence, Beja, Dec 4-7, 2003. Berlin, Heidelberg: Springer, 2003: 435-444. [9] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3): 333-359. [10] 林博俊. 基于文本的音乐标签标注[D]. 广州: 华南理工大学, 2020. LIN B J. Music tagging based on text[D]. Guangzhou: South China University of Technology, 2020. [11] 孟镇, 王昊, 虞为, 等. 基于特征融合的声音分类研究[J]. 数据分析与知识发现, 2021, 5(5): 59-70. MENG Z, WANG H, YU W, et al. Vocal music classification based on multi-category feature fusion[J]. Data Analysis and Knowledge Discovery, 2021, 5(5): 59-70. [12] WANG J C, YANG Y H, WANG H M, et al. The acoustic emotion Gaussians model for emotion-based music annotation and retrieval[C]//Proceedings of the 20th ACM International Conference on Multimedia, Nara, Oct 29-Nov 2, 2012. New York: ACM, 2012: 89-98. [13] WANG J C, LEE Y S, CHIN Y H, et al. Hierarchical Dirichlet process mixture model for music emotion recognition[J]. IEEE Transactions on Affective Computing, 2015, 6(3): 261-271. [14] SORDO M. Semantic annotation of music collections: a computational approach[D]. Barcelona: Universitat Pompeu Fabra, 2012. [15] NESS S R, THEOCHARIS A, TZANETAKIS G, et al. Improving automatic music tag annotation using stacked generalization of probabilistic svm outputs[C]//Proceedings of the 17th ACM International Conference on Multimedia, Beijing, Oct 19-24, 2009. New York: ACM, 2009: 705-708. [16] RAJENDRAN S, ANANDARAJ S P. Implementation of computationally efficient and accurate music auto tagging[C]//Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems, Coimbatore, Mar 25-26, 2022. Piscataway: IEEE, 2022: 1630-1635. [17] ULLRICH K, SCHLüTER J, GRILL T. Boundary detection in music structure analysis using convolutional neural networks[C]//Proceedings of the 15th International Society for Music Information Retrieval Conference, Taipei, China, Oct 27-31, 2014: 417-422. [18] SCHLüTER J, B?CK S. Improved musical onset detection with convolutional neural networks[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, May 4-9, 2014. Piscataway: IEEE, 2014: 6979-6983. [19] NAYYAR R K, NAIR S, PATIL O, et al. Content-based auto-tagging of audios using deep learning[C]//Proceedings of the 2017 International Conference on Big Data, IoT and Data Science, Pune, Dec 20-22, 2017. Piscataway: IEEE, 2017: 30-36. [20] CHOI K, FAZEKAS G, SANDLER M B. Automatic tagging using deep convolutional neural networks[C]//Proceedings of the 17th International Society for Music Information Retrieval Conference, New York, Aug 7-11, 2016: 805-811. [21] FERRARO A, BOGDANOV D, JAY X S, et al. How low can you go? Reducing frequency and time resolution in current CNN architectures for music auto-tagging[C]//Proceedings of the 2020 28th European Signal Processing Conference, Amsterdam, Jan 18-21, 2021. Piscataway: IEEE, 2021: 131-135. [22] CHOI K, FAZEKAS G, SANDLER M, et al. A comparison of audio signal preprocessing methods for deep neural networks on music tagging[C]//Proceedings of the 2018 26th European Signal Processing Conference, Rome, Sep 3-7, 2018. Piscataway: IEEE, 2018: 1870-1874. [23] WON M, CHUN S, NIETO O, et al. Data-driven harmonic filters for audio representation learning[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 536-540. [24] NAM J, HERRERA J, SLANEY M, et al. Learning sparse feature representations for music annotation and retrieval[C]//Proceedings of the 13th International Society for Music Information Retrieval Conference, Porto, Oct 8-12, 2012: 565-570. [25] DIELEMAN S, SCHRAUWEN B. Multiscale approaches to music audio feature learning[C]//Proceedings of the 14th International Society for Music Information Retrieval Conference, Curitiba, Nov 4-8, 2013: 3-8. [26] VAN DEN OORD A, DIELEMAN S, SCHRAUWEN B. Transfer learning by supervised pre-training for audio-based music classification[C]//Proceedings of the 15th International Society for Music Information Retrieval Conference, Taipei, China, Oct 27-31, 2014: 29-34. [27] JU C, HAN L, PENG G. Music auto-tagging based on attention mechanism and multi-label classification[C]//Proceedings of the 2021 International Conference on Image, Vision and Intelligent Systems, Changsha, Jun 18-20, 2021. Singapore: Springer, 2022: 245-255. [28] DIELEMAN S, SCHRAUWEN B. End-to-end learning for music audio[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, May 4-9, 2014. Piscataway: IEEE, 2014: 6964-6968. [29] LEE J, PARK J, KIM K L, et al. Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms[J]. arXiv:1703.01789, 2017. [30] LEE J, PARK J, KIM K L, et al. SampleCNN: end-to-end deep convolutional neural networks using very small filters for music classification[J]. Applied Sciences, 2018, 8(1): 150. [31] PONS J, NIETO O, PROCKUP M, et al. End-to-end learning for music audio tagging at scale[C]//Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, Sep 23-27, 2018: 634-644. [32] PONS J, SERRA X. Designing efficient architectures for modeling temporal features with convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, Mar 5-9, 2017. Piscataway: IEEE, 2017: 2472-2476. [33] PONS J, SLIZOVSKAIA O, GONG R, et al. Timbre analysis of music audio signals with convolutional neural networks[C]//Proceedings of the 2017 25th European Signal Processing Conference, Kos island, Aug 28-Sep 2, 2017. Piscataway: IEEE, 2017: 2744-2748. [34] SONG G, WANG Z, HAN F, et al. Music auto-tagging using scattering transform and convolutional neural network with self-attention[J]. Applied Soft Computing, 2020, 96: 106702. [35] 马春艳, 刘永坚, 解庆, 等. 自动图像标注技术综述[J]. 计算机研究与发展, 2020, 57(11): 2348-2374. MA C Y, LIU Y J, XIE Q, et al. Review of automatic image annotation technology[J]. Journal of Computer Research and Development, 2020, 57(11): 2348-2374. [36] MANDEL M I, ELLIS D P W. Multiple-instance learning for music information retrieval[C]//Proceedings of the 9th International Society for Music Information Retrieval Conference, Philadelphia, Sep 14-18, 2008: 577-582. [37] WANG Q, XIONG Y, SU F. Semantic music annotation by label-specific conditional random fields[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition, Beijing, Jan 10-15, 2021. Piscataway: IEEE, 2018: 2941-2946. [38] TURNBULL D, BARRINGTON L, TORRES D, et al. Semantic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(2): 467-476. [39] CHEN Z S, JANG J S R. On the use of anti-word models for audio music annotation and retrieval[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(8): 1547-1556. [40] MIOTTO R, LANCKRIET G. A generative context model for semantic music annotation and retrieval[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 20(4): 1096-1108. [41] 王诗俊, 陈宁. 基于混合判别受限波兹曼机的音乐自动标注算法[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 540-545. WANG S J, CHEN N. Annotating music with hybrid discriminative restricted Boltzmann machines[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(4): 540-545. [42] 方晔玮, 王铭涛, 陈文亮, 等. 基于自动弱标注数据的跨领域命名实体识别[J]. 中文信息学报, 2022, 36(3): 73-81. FANG Y W, WANG M T, CHEN W L, et al. Cross-domain NER using automatically partial-annotated data[J]. Journal of Chinese Information Processing, 2022, 36(3): 73-81. [43] NING K P, ZHAO X, LI Y, et al. Active learning for open-set annotation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022, Piscataway: IEEE, 2022: 41-49. [44] 汤亦凡. 基于胶囊网络的音乐自动标注算法及其应用研究[D]. 成都: 电子科技大学, 2021. TANG Y F. Research on music auto-tagging based on capsule network and its application[D]. Chengdu: University of Electronic Science and Technology of China, 2021. [45] KIM T, LEE J, NAM J. Sample-level CNN architectures for music auto-tagging using raw waveforms[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 366-370. [46] YU Y B, QI M H, TANG Y F, et al. A sample-level DCNN for music auto-tagging[J]. Multimedia Tools and Applications, 2021, 80(8): 11459-11469. [47] OORD A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. arXiv:1609.03499, 2016. [48] LEE J, NAM J. Multi-level and multi-scale feature aggregation using pretrained convolutional neural networks for music auto-tagging[J]. IEEE Signal Processing Letters, 2017, 24(8): 1208-1212. [49] LIU J Y, YANG Y H. Event localization in music auto-tagging[C]//Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, Oct 15-19, 2016. New York: ACM, 2016: 1048-1057. [50] CHOI K, FAZEKAS G, CHO K, et al. The effects of noisy labels on deep convolutional neural networks for music tagging[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 139-149. [51] 王振宇, 张瑞, 高宇轩, 等. 基于标签深度分析的音乐自动标注算法[J]. 华南理工大学学报(自然科学版), 2019, 47(8): 71-76. WANG Z Y, ZHANG R, GAO Y X, et al. Music auto-tagging algorithm based on deep analysis on labels[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 71-76. [52] LU R, ZHENG B, HAI J, et al. Progressive teacher-student training framework for music tagging[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 23-27, 2022. Piscataway: IEEE, 2022: 3129-3133. [53] LIN Y H, CHUNG C H, CHEN H H. Playlist-based tag propagation for improving music auto-tagging[C]//Proceedings of the 2018 26th European Signal Processing Conference, Rome, Sep 3-7, 2018. Piscataway: IEEE, 2018: 2270-2274. [54] LIN Y H, CHEN H H. Tag propagation and cost-sensitive learning for music auto-tagging[J]. IEEE Transactions on Multimedia, 2020, 23: 1605-1616. [55] WON M, FERRARO A, BOGDANOV D, et al. Evaluation of CNN-based automatic music tagging models[J]. arXiv: 2006.00751, 2020. [56] WON M, CHUN S, NIETO CABALLERO O, et al. Automatic music tagging with harmonic CNN[EB/OL]. (2019)[2023-02-22]. http: //won2019ismirlbd.pdf (sanghyukchun. github.io). [57] HUA C, WU S, GUAN X. New robust stability condition for discrete-time recurrent neural networks with time-varying delays and nonlinear perturbations[J]. Neurocomputing, 2017, 219: 203-209. [58] WANG Z, WANG J, WU Y. State estimation for recurrent neural networks with unknown delays: a robust analysis approach[J]. Neurocomputing, 2017, 227: 29-36. [59] CHOI K, FAZEKAS G, SANDLER M, et al. Convolutional recurrent neural networks for music classification[C]//Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, Mar 5-9, 2017. Piscataway: IEEE, 2017: 2392-2396. [60] SONG G, WANG Z, HAN F, et al. Music auto-tagging using deep recurrent neural networks[J]. Neurocomputing, 2018, 292: 104-110. [61] 王倩倩. 基于内容的音乐自动标注方法研究[D]. 南京: 南京大学, 2019. WANG Q Q. Research on content-based automatic music annotation methods[D]. Nanjing: Nanjing University, 2019. [62] WANG Q, SU F, WANG Y. A hierarchical attentive deep neural network model for semantic music annotation integrating multiple music representations[C]//Proceedings of the 2019 International Conference on Multimedia Retrieval, Ottawa, Jun 10-13, 2019. New York: ACM, 2019: 150-158. [63] WON M, CHUN S, SERRA X. Toward interpretable music tagging with self-attention[J]. arXiv:1906.04972, 2019. [64] WON M, CHOI K, SERRA X. Semi-supervised music tagging transformer[C]//Proceedings of the 22nd International Society for Music Information Retrieval Conference, Nov 7-12, 2021: 769-776. [65] ZHAO H, ZHANG C, ZHU B, et al. S3T: self-supervised pre-training with swin transformer for music classification[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 22-27, 2022. Piscataway: IEEE, 2022: 606-610. [66] 陈培培, 邵曦. 基于生成对抗网络的音乐标签自动标注[J]. 南京信息工程大学学报(自然科学版), 2018, 10(6): 754-759. CHEN P P, SHAO X. Music auto-tagging based on generative adversarial networks[J]. Joumal of Nanjing University of Information Science and Technology (Natural Science Edition), 2018, 10(6): 754-759. [67] 陈培培. 基于生成对抗网络的音乐标签自动标注[D]. 南京: 南京邮电大学, 2019. CHEN P P. Music auto-tagging based on generative adversarial network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. [68] 杨帆. 基于音乐内容的自动标签算法研究[D]. 武汉: 长江大学, 2021. YANG F. Research on automatic label algorithm based on music content[D]. Wuhan: Yangtze University, 2021. [69] 韩凝. 基于深度神经网络的音乐自动标注技术研究[D]. 北京: 北京邮电大学, 2018. HAN N. Research on music automatic annotation based on deep neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. [70] WANG H C, SYU S W, WONGCHAISUWAT P. A method of music autotagging based on audio and lyrics[J]. Multimedia Tools and Applications, 2021, 80(10): 15511-15539. [71] AVRAMIDIS K, STEWART S, NARAYANAN S. On the role of visual context in enriching music representations[J]. arXiv:2210.15828, 2022. [72] LIU C, FENG L, LIU G, et al. Bottom-up broadcast neural network for music genre classification[J]. Multimedia Tools and Applications, 2021, 80: 7313-7331. [73] LIU K, DEMORI J, ABAYOMI K. Open set recognition for music genre classification[J]. arXiv:2209.07548, 2022. [74] LAW E, WEST K, MANDEL M I, et al. Evaluation of algorithms using games: the case of music tagging[C]//Proceedings of the 10th International Society for Music Information Retrieval Conference, Kobe, Oct 26-30, 2009: 387-392. [75] VAHIDI C, SAITIS C, FAZEKAS G. A modulation front-end for music audio tagging[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, Jul 18-23, 2021. Piscataway: IEEE, 2021. [76] BERTIN-MAHIEUX T, ELLIS D P W, WHITMAN B, et al. The million song dataset[C]//Proceedings of the 12th International Society for Music Information Retrieval Conference, Miami, Oct 24-28, 2011: 591-596. [77] TURNBULL D, BARRINGTON L, TORRES D, et al. Towards musical query-by-semantic-description using the CAL500 data set[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Jul 23-27, 2007. New York: ACM, 2007: 439-446. [78] BOGDANOV D, WON M, TOVSTOGAN P, et al. The MTG-Jamendo dataset for automatic music tagging[C]//Proceedings of the 2019 International Conference on Machine Learning, Machine Learning for Music Discovery Workshop, Long Beach, Jun 9-15, 2019. [79] 萧永乐. 基于标签深度分析的音乐自动标注算法[D]. 广州: 华南理工大学, 2018. XIAO Y L. Deep analysis on labels for music auto-tagging[D]. Guangzhou: South China University of Technology, 2018. [80] 陈景霞, 王丽艳, 贾小云, 等. 基于深度卷积神经网络的脑电信号情感识别[J]. 计算机工程与应用, 2019, 55(18): 103-110. CHEN J X, WANG L Y, JIA X Y, et al. EEG-based emotion recognition using deep convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(18): 103-110. [81] 宋扬. 基于Transformer的蒙古族音乐分类研究[D]. 呼和浩特: 内蒙古师范大学, 2022. SONG Y. Research on Mongolian music classification based on Transformer[D]. Hohhot: Inner Mongolia Normal University, 2022. |
[1] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[2] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[3] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[4] | LIU Weiguang, LIU Dong, WANG Lu. Survey of Deformable Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564. |
[5] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[6] | YANG Yanyan, LI Leixiao, LIN Hao. Review of Research on Fatigue Driving Detection Based on Driver Facial Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1249-1267. |
[7] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[8] | JIANG Lingyun, YANG Jinlong. Detection Optimized Labeled Multi-Bernoulli Algorithm for Visual Multi-target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1343-1358. |
[9] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[10] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[11] | LYU Jia, XU Pengcheng. Image Super-resolution Reconstruction Algorithm Based on Multi-scale Adaptive Upsampling [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 879-891. |
[12] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[13] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[14] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[15] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/