Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (9): 2015-2029.DOI: 10.3778/j.issn.1673-9418.2301064
• Frontiers·Surveys • Previous Articles Next Articles
LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing
Online:
2023-09-01
Published:
2023-09-01
刘华玲,陈尚辉,曹世杰,朱建亮,任青青
LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029.
刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2301064
[1] NGADIRON S, ABD AZIZ A, MOHAMED S S. The spread of COVID-19 fake news on social media and its impact among Malaysians[J]. International Journal of Law, Government and Communication, 2021, 6(22): 253-260. [2] SHU K, SLIVA A, WANG S, et al. Fake news detection on social media: a data mining perspective[J]. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22-36. [3] MANZOOR S I, SINGLA J. Fake news detection using machine learning approaches: a systematic review[C]//Proceedings of the 3rd International Conference on Trends in Electronics and Informatics, Tirunelveli, Apr 23-25, 2019. Piscataway: IEEE, 2019: 230-234. [4] MRIDHA M F, KEYA A J, HAMID M A, et al. A compre-hensive review on fake news detection with deep learning[J]. IEEE Access, 2021, 9: 156151-156170. [5] KUMAR S, KUMAR S, YADAV P, et al. A survey on analysis of fake news detection techniques[C]//Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems, Coimbatore, Mar 25-27, 2021. Piscataway:IEEE, 2021: 894-899. [6] ALAM F, CRESCI S, CHAKRABORTY T, et al. A survey on multimodal disinformation detection[J]. arXiv:2103.12541, 2021. [7] GUIMAR?ES N, FIGUEIRA á, TORGO L. Can fake news detection models maintain the performance through time? A longitudinal evaluation of Twitter publications[J]. Mathe-matics, 2021, 9(22): 2988. [8] ALI I, AYUB M N B, SHIVAKUMARA P, et al. Fake news detection techniques on social media: a survey[J]. Wireless Communications and Mobile Computing, 2022: 6072084. [9] MA J, GAO W, MITRA P, et al. Detecting rumors from micro-blogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intel-ligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 3818-3824. [10] CAO J, GUO J, LI X, et al. Automatic rumor detection on microblogs: a survey[J]. arXiv:1807.03505, 2018. [11] BOIDIDOU C, PAPADOPOULOS S, ZAMPOGLOU M, et al. Detection and visualization of misleading content on Twitter[J]. International Journal of Multimedia Information Retrieval, 2018, 7(1): 71-86. [12] PAPADOPOULOU O, ZAMPOGLOU M, PAPADOPOULOS S, et al. A corpus of debunked and verified user-generated videos[J]. Online Information Review, 2018, 43(1): 72-88. [13] MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning[C]//Pro-ceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 708-717. [14] DAI E, SUN Y, WANG S. Ginger cannot cure cancer: battling fake health news with a comprehensive data repository[C]//Proceedings of the 14th International AAAI Conference on Web and Social Media, Atlanta, Jun 8-11, 2020. Menlo Park: AAAI, 2020: 853-862. [15] LI Y, JIANG B, SHU K, et al. MM-COVID: a multilingual and multimodal data repository for combating COVID-19 disinformation[J]. arXiv:2011.04088, 2020. [16] ZUBIAGA A, LIAKATA M, PROCTER R. Learning repor-ting dynamics during breaking news for rumour detection in social media[J]. arXiv:1610.07363, 2016. [17] SHU K, MAHUDESWARAN D, WANG S, et al. Fake-newsnet: a data repository with news content, social con-text, and spatiotemporal information for studying fake news on social media[J]. Big Data, 2020, 8(3): 171-188. [18] WANG W Y. “liar, liar pants on fire”: a new benchmark dataset for fake news detection[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Lin-guistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 422-426. [19] RASHKIN H, CHOI E, JANG J Y, et al. Truth of varying shades: analyzing language in fake news and political fact-checking[C]//Proceedings of the 2017 Conference on Empi-rical Methods in Natural Language Processing, Copen-hagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 2931-2937. [20] AHMED H, TRAORE I, SAAD S. Detection of online fake news using n-gram analysis and machine learning techni-ques[C]//Proceedings of the 1st International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, Vancouver, Oct 26-28, 2017. Cham: Springer, 2017: 127-138. [21] SALEM F K A, FEEL R A, ELBASSUONI S, et al. FA-KES: a fake news dataset around the Syrian war[C]//Proceedings of the 13th International Conference on Web and Social Media, Münich, Jun 11-14, 2019. Menlo Park: AAAI, 2019: 573-582. [22] SHAHI G K, DIRKSON A, MAJCHRZAK T A. An explo-ratory study of COVID-19 misinformation on Twitter[J]. On-line Social Networks and Media, 2021, 22: 100104. [23] N?RREGAARD J, HORNE B D, ADALI S. NELA-GT-2018: a large multi-labelled news dataset for the study of misinformation in news articles[C]//Proceedings of the 13th International Conference on Web and Social Media, Münich, Jun 11-14, 2019. Menlo Park: AAAI, 2019: 630-638. [24] GRUPPI M, HORNE B D, ADALI S. NELA-GT-2021: a large multi-labelled news dataset for the study of misinformation in news articles[J]. arXiv:2203.05659, 2022. [25] 高玉君, 梁刚, 蒋方婷, 等. 社会网络谣言检测综述[J]. 电子学报, 2020, 48(7): 1421-1435. GAO Y J, LIANG G, JIANG F T, et al. Social network rumor detection: a survey[J]. Acta Electronic Sinica, 2020, 48(7): 1421-1435. [26] ZHOU X, ZAFARANI R. Network-based fake news detec-tion: a pattern-driven approach[J]. SIGKDD Explorations, 2019, 21(2): 48-60. [27] ZHAO Y, ZOBEL J. Searching with style: authorship attribu-tion in classic literature[C]//Proceedings of the 30th Austra-lasian Computer Science Conference, Victoria, Jan 30-Feb 2, 2007. Sydney: Australian Computer Society, 2007: 59-68. [28] FENG S, BANERJEE R, CHOI Y. Syntactic stylometry for deception detection[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, Jul 8-14, 2012. Stroudsburg: ACL, 2012: 171-175. [29] PéREZ-ROSAS V, KLEINBERG B, LEFEVRE A, et al. Auto-matic detection of fake news[J]. arXiv:1708.07104, 2017. [30] RUBIN V L, CONROY N J, CHEN Y. Towards news verifica-tion: deception detection methods for news discourse[C]//Proceedings of the 2015 Hawaii International Conference on System Sciences, Hawaii, Jan 5-8, 2015. Washington:IEEE Computer Society, 2015: 5-8. [31] KARIMI H, TANG J. Learning hierarchical discourse-level structure for fake news detection[J]. arXiv:1903.07389, 2019. [32] SHARMA K, QIAN F, JIANG H, et al. Combating fake news: a survey on identification and mitigation techniques[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(3): 1-42. [33] CHU Z, GIANVECCHIO S, WANG H, et al. Detecting auto-mation of Twitter accounts: are you a human, bot, or cyborg?[J]. IEEE Transactions on Dependable and Secure Compu-ting, 2012, 9(6): 811-824. [34] CASTILLO C, MENDOZA M, POBLETE B. Information cre-dibility on Twitter[C]//Proceedings of the 20th International Conference on World Wide Web, Hyderabad, Mar 28-Apr 1, 2011. New York: ACM, 2011: 675-684. [35] GUO H, CAO J, ZHANG Y, et al. Rumor detection with hierarchical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Know-ledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 943-951. [36] 段大高, 盖新新, 韩忠明, 等. 基于梯度提升决策树的微博虚假消息检测[J]. 计算机应用, 2018, 38(2): 410-414. DUAN D G, GAI X X, HAN Z M, et al. Micro-blog mis-information detection based on gradient boost decision tree[J]. Journal of Computer Applications, 2018, 38(2): 410-414. [37] 张仰森, 彭媛媛, 段宇翔, 等. 基于评论异常度的新浪微博谣言识别方法[J]. 自动化学报, 2020, 46(8): 1689-1702. ZHANG Y S, PENG Y Y, DUAN Y X, et al. The method of Sina Weibo rumor detecting based on comment abnormality[J]. Acta Automatica Sinica, 2020, 46(8): 1689-1702. [38] MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 18-23, 2015. New York: ACM, 2015: 1751-1754. [39] BAHAD P, SAXENA P, KAMAL R. Fake news detection using bi-directional LSTM-recurrent neural network[J]. Procedia Computer Science, 2019, 165: 74-82. [40] CHEN T, LI X, YIN H, et al. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection[C]//Proceedings of the 2018 Pacific-Asia Con-ference on Trends and Applications in Knowledge Disco-very and Data Mining, Melbourne, Jun 3-8, 2018. Cham: Springer, 2018: 40-52. [41] YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Mel-bourne, Aug 19-25, 2017. Menlo Park: AAAI, 2017: 3901-3907. [42] QIAN F, GONG C, SHARMA K, et al. Neural user response generator: fake news detection with collective user intelli-gence[C]//Proceedings of the 27th International Joint Con-ference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. New York: AAAI Press, 2018: 3834-3840. [43] MIKOLOV T, DEORAS A, KOMBRINK S, et al. Empirical evaluation and combination of advanced language modeling techniques[C]//Proceedings of the 12th Annual Conference of the International Speech Communication Association, Florence, Aug 27-31, 2011. Baixas: ISCA, 2011: 605-608. [44] DUNGS S,?AKER A,?FUHR N,?et al. Can rumour stance alone predict veracity?[C]//Proceedings of the 27th International Conference on Computational Linguistics, New Mexico, Aug 20-26, 2018. Stroudsburg: ACL, 2018: 3360-3370. [45] MA J, GAO W, WONG K F. Detect rumors on Twitter by promoting information campaigns with generative adver-sarial learning[C]//Proceedings of the 2019 World Wide Web Conference,?San Francisco, May 13-17, 2019. New York: ACM, 2019: 3049-3055. [46] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with con-volutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. [47] 何韩森, 孙国梓. 基于特征聚合的假新闻内容检测模型[J]. 计算机应用, 2020, 40(8): 2189-2193. HE H S, SUN G Z. Fake news content detection model based on feature aggregation[J]. Journal of Computer Appli-cations, 2020, 40(8): 2189-2193. [48] 孙尉超, 陈涛. 基于ALBERT-BiLSTM模型的微博谣言识别方法研究[J]. 计算机时代, 2020(8): 21-26. SUN W C, CHEN T. Research on Microblog rumor recogni-tion method based on ALBERT-BiLSTM model[J]. Compu-ter Era, 2020(8): 21-26. [49] KALIYAR R K, GOSWAMI A, NARANG P. FakeBERT: fake news detection in social media with a BERT-based deep learning approach[J]. Multimedia Tools and Applications, 2021, 80(8): 11765-11788. [50] MAYANK M, SHARMA S, SHARMA R. DEAP-FAKED: knowledge graph based approach for fake news detection[J]. arXiv:2107.10648, 2021. [51] MORENCY L P, LIANG P P, ZADEH A. Tutorial on multi-modal machine learning[C]//Proceedings of the 2022 Con-ference of the North American Chapter of the Association for Computational Linguistics: Human Language Techno-logies: Tutorial Abstracts, Seattle, Jul 10-15, 2022. Strouds-burg: ACL, 2022: 33-38. [52] KIM W, SON B, KIM I. ViLT: vision-and-language trans-former without convolution or region supervision[C]//Pro-ceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 5583-5594. [53] NAGRANI A, YANG S, ARNAB A, et al. Attention bottle-necks for multimodal fusion[C]//Advances in Neural Infor-mation?Processing?Systems?34,?Dec?6-14, 2021: 14200-14213. [54] JIN Z, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Pro-ceedings of the 25th ACM International Conference on Multimedia, California, Oct 23-27, 2017. New York: ACM, 2017: 795-816. [55] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. Spot-Fake: a multi-modal framework for fake news detection[C]//Proceedings of the 2019 IEEE 5th International Con-ference on Multimedia Big Data, Singapore, Sep 11-13, 2019. Piscataway: IEEE, 2019: 39-47. [56] SINGHAL S, KABRA A, SHARMA M, et al. SpotFake+: a multimodal framework for fake news detection via transfer learning (student abstract)[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 13915-13916. [57] 陈志毅, 隋杰. 基于DeepFM和卷积神经网络的集成式多模态谣言检测方法[J]. 计算机科学, 2022, 49(1): 101-107. CHEN Z Y, SUI J. DeepFM and convolutional neural networks ensembles for multimodal rumor detection[J]. Computer Science, 2022, 49(1): 101-107. [58] SONG C, NING N, ZHANG Y, et al. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks[J]. Information Processing & Management, 2021, 58(1): 102437. [59] QIAN S, WANG J, HU J, et al. Hierarchical multi-modal contextual attention network for fake news detection[C]//Proceedings of the 44th International ACM SIGIR Con-ference on Research and Development in Information Ret-rieval, Jul 11-15, 2021. New York: ACM, 2021: 153-162. [60] 亓鹏, 曹娟, 盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465. QI P, CAO J, SHENG Q. Semantics-enhanced multi-modal fake news detection[J]. Journal of Computer Research and Development, 2021, 58(7): 1456-1465. [61] 戚力鑫, 万书振, 唐斌, 等. 基于注意力机制的多模态融合谣言检测方法[J]. 计算机工程与应用, 2022, 58(19): 209-217. QI L X, WAN S Z, TANG B, et al. Multimodal fusion rumor detection method based on attention mechanism[J]. Compu-ter Engineering and Applications, 2022, 58(19): 209-217. [62] ZHOU X, WU J, ZAFARANI R. SAFE: similarity-aware multi-modal fake news detection[C]//LNCS 12085: Procee-dings of the 24th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Singapore, May 11-14, 2020. Cham: Springer, 2020: 354-367. [63] GIACHANOU A, ZHANG G, ROSSO P. Multimodal multi-image fake news detection[C]//Proceedings of the 2020 IEEE 7th International Conference on Data Science and Ad-vanced Analytics, Sydney, Oct 6-9, 2020. Piscataway: IEEE, 2020: 647-654. [64] MüLLER-BUDACK E, THEINER J, DIERING S, et al. Multimodal analytics for real-world news using measures of cross-modal entity consistency[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Jun 8-11, 2020. New York: ACM, 2020: 16-25. [65] XUE J, WANG Y, TIAN Y, et al. Detecting fake news by exploring the consistency of multimodal data[J]. Informa-tion Processing & Management, 2021, 58(5): 102610. [66] CHEN Y, LI D, ZHANG P, et al. Cross-modal ambiguity learning for multimodal fake news detection[C]//Procee-dings of the 2022 ACM Web Conference, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 2897-2905. [67] WANG Y, MA F, JIN Z, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Procee-dings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 849-857. [68] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multi-modal variational autoencoder for fake news detection[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2915-2921. [69] QIAN S, HU J, FANG Q, et al. Knowledge-aware multi-modal adaptive graph convolutional networks for fake news detection[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(3): 1-23. [70] ZHANG H, FANG Q, QIAN S, et al. Multi-modal knowledge-aware event memory network for social media rumor detec-tion[C]//Proceedings of the 27th ACM International Confe-rence on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 1942-1951. [71] ASWANI R, KAR A K, ILAVARASAN P V. Experience: managing misinformation in social media—insights for policymakers from Twitter analytics[J]. Journal of Data and Information Quality, 2019, 12(1): 1-18. [72] WU K, YANG S, ZHU K Q. False rumors detection on Sina Weibo by propagation structures[C]//Proceedings of the 2015 IEEE 31st International Conference on Data Enginee-ring, Seoul, Apr 13-17, 2015. Piscataway: IEEE, 2015: 651-662. [73] MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Compu-tational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1980-1989. [74] DAVOUDI M, MOOSAVI M R, SADREDDINI M H. DSS: a hybrid deep model for fake news detection using propaga-tion tree and stance network[J]. Expert Systems with Appli-cations, 2022, 198: 116635. [75] SHU K, WANG S, LIU H. Beyond news contents: the role of social context for fake news detection[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York:ACM, 2019: 312-320. [76] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [77] DOU Y, LIU Z, SUN L, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 315-324. [78] CHANDRA S, MISHRA P, YANNAKOUDAKIS H, et al. Graph-based modeling of online communities for fake news detection[J]. arXiv:2008.06274, 2020. [79] WANG Y, QIAN S, HU J, et al. Fake news detection via know-ledge-driven multimodal graph convolutional networks[C]//Proceedings of the 2020 International Conference on Multi-media Retrieval, Dublin, Jun 8-11, 2020. New York: ACM, 2020: 540-547. [80] BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 549-556. [81] NI S, LI J, KAO H Y. MVAN: multi-view attention networks for fake news detection on social media[J]. IEEE Access, 2021, 9: 106907-106917. [82] HU L, YANG T, ZHANG L, et al. Compare to the knowledge: graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Asso-ciation for Computational Linguistics and the 11th Interna-tional Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 754-763. [83] NGUYEN V H, SUGIYAMA K, NAKOV P, et al. FANG: leveraging social context for fake news detection using graph representation[C]//Proceedings of the 29th ACM Inter-national Conference on Information & Knowledge Manage-ment, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1165-1174. [84] SONG C, SHU K, WU B. Temporally evolving graph neural network for fake news detection[J]. Information Processing & Management, 2021, 58(6): 102712. [85] CUI J, KIM K, NA S H, et al. Meta-path-based fake news detection leveraging multi-level social context information[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, Oct 17-21, 2022. New York: ACM, 2022: 325-334. |
[1] | LIU Chao, LIANG Anting, LIU Xiaoyang, HUANG Xianying. Social Network Nodes Classification Method Based on Multi-information Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2198-2208. |
[2] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[3] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[4] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[5] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[6] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[7] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[8] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[9] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[10] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[11] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[12] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[13] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[14] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[15] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/