Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (8): 1960-1978.DOI: 10.3778/j.issn.1673-9418.2310083
• Frontiers·Surveys • Previous Articles Next Articles
WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei
Online:
2024-08-01
Published:
2024-07-29
汪有崧,裴峻鹏,李增辉,王伟
WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978.
汪有崧, 裴峻鹏, 李增辉, 王伟. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2310083
[1] STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. [2] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 203-210. [3] OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004-2010. [4] BUDAI A, BOCK R, MAIER A, et al. Robust vessel segmentation in fundus images[J]. International Journal of Biomedical Imaging, 2013: 154860. [5] FARNELL D J J, HATFIELD F N, KNOX P, et al. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators[J]. Journal of the Franklin Institute, 2008, 345(7): 748-765. [6] ZHANG J, DASHTBOZORG B, BEKKERS E J, et al. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores[J]. IEEE Transactions on Medical Imaging, 2016, 35: 2631-2644. [7] ORLANDO J I, BARBOSA BREDA J, VAN KEER K, et al. Towards a glaucoma risk index based on simulated hemodynamics from fundus images[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 65-73. [8] DASHTBOZORG B, ZHANG J, HUANG F, et al. Retinal microaneurysms detection using local convergence index features[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3300-3315. [9] DHAL K G, DAS A, RAY S, et al. Histogram equalization variants as optimization problems: a review[J]. Archives of Computational Methods in Engineering, 2020, 28: 1471-1496. [10] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 3431-3440. [11] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham: Springer, 2015: 234-241. [12] LIU Y, SHEN J, YANG L, et al. Wave-Net: a lightweight deep network for retinal vessel segmentation from fundus images[J]. Computers in Biology and Medicine, 2023, 152: 106341. [13] BEECHE C, SINGH J P, LEADER J K, et al. Super U-Net: a modularized generalizable architecture[J]. Pattern Recognition, 2022, 128: 108669. [14] KHAN M Z, LEE Y. Localization of ocular vessels with context sensitive semantic segmentation[C]//Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics, Athens, Jul 27-30, 2021. Piscataway: IEEE, 2021: 1-5. [15] GUO C, SZEMENYEI M, HU Y, et al. Channel attention residual U-net for retinal vessel segmentation[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 1185-1189. [16] LIU C, GU P, XIAO Z. Multiscale U-Net with spatial positional attention for retinal vessel segmentation[J]. Journal of Healthcare Engineering, 2022: 5188362. [17] WU Y, XIA Y, SONG Y, et al. NFN+: a novel network followed network for retinal vessel segmentation[J]. Neural Networks, 2020, 126: 153-162. [18] WANG H, XU G, PAN X, et al. Attention-inception-based U-Net for retinal vessel segmentation with advanced residual[J]. Computers & Electrical Engineering, 2022, 98: 107670. [19] DONG F, WU D, GUO C, et al. CRAUNet: a cascaded residual attention U-Net for retinal vessel segmentation[J]. Computers in Biology and Medicine, 2022, 147: 105651. [20] XU S, CHEN Z, CAO W, et al. Retinal vessel segmentation algorithm based on residual convolution neural network[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9. [21] HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. [22] KAMIREDDY C, DADIREDDY S S, JARUGULA A, et al. Retinal vessel segmentation using multiheaded attention UNet[C]//Proceedings of the 2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, Trichirappalli, Apr 5-7, 2023: 1-6. [23] ZHUO Z, HUANG J, LU K, et al. A size-invariant convolutional network with dense connectivity applied to retinal vessel segmentation measured by a unique index[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105508. [24] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016. [25] 胡扬涛, 裴洋, 林川, 等. 空洞残差U型网络用于视网膜血管分割[J]. 计算机工程与应用, 2021, 57(7): 185-191. HU Y T, PEI Y, LIN C, et al. Atrous residual U-Net for retinal vessel segmentation[J]. Computer Engineering and Applications, 2021, 57(7): 185-191. [26] HUSSAIN S, GUO F, LI W, et al. DilUnet: a U-net based architecture for blood vessels segmentation[J]. Computer Methods and Programs in Biomedicine, 2022, 218: 106732. [27] YANG B, QIN L, PENG H, et al. SDDC-Net: a U-shaped deep spiking neural P convolutional network for retinal vessel segmentation[J]. Digital Signal Processing, 2023, 136: 104002. [28] ZHANG W, LI L, CHEONG V, et al. Deep encoder-decoder neural networks for retinal blood vessels dense prediction[J]. International Journal of Computational Intelligence Systems, 2021, 14: 1078-1086. [29] TONG H, FANG Z, WEI Z, et al. SAT-Net: a side attention network for retinal image segmentation[J]. Applied Intelligence, 2021, 51: 5146-5156. [30] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807. [31] WU Y, JIAO G, LIU J. SepFE: separable fusion enhanced network for retinal vessel segmentation[J]. Computer Modeling in Engineering & Sciences, 2023, 136: 2465-2485. [32] SUN K, CHEN Y, CHAO Y, et al. A retinal vessel segmentation method based improved U-Net model[J]. Biomedical Signal Processing and Control, 2023, 82: 104574. [33] JIN Q, MENG Z, PHAM T D, et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 2019, 178: 149-162. [34] LIU R, WANG T, ZHANG X, et al. DA-Res2UNet: explainable blood vessel segmentation from fundus images[J]. Alexandria Engineering Journal, 2023, 68: 539-549. [35] HAN J, WANG Y, GONG H. Fundus retinal vessels image segmentation method based on improved U-Net[J]. IRBM, 2022, 43(6): 628-639. [36] RYU J, REHMAN M U, NIZAMI I F, et al. SegR-Net: a deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107132. [37] WU H, WANG W, ZHONG J, et al. SCS-Net: a scale and context sensitive network for retinal vessel segmentation [J]. Medical Image Analysis, 2021, 70: 102025. [38] DONG H, ZHANG T, ZHANG T, et al. Supervised learning-based retinal vascular segmentation by M-UNet full convolutional neural network[J]. Signal, Image and Video Processing, 2022, 16(7): 1755-1761. [39] XIANG Z, NI C, LI M, et al. AFFD-Net: a dual-decoder network based on attention-enhancing and feature fusion for retinal vessel segmentation[J]. IEEE Access, 2023, 11: 45871-45887. [40] GUO S. DPN: detail-preserving network with high resolution representation for efficient segmentation of retinal vessels[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(5): 5689-5702. [41] LI X, SONG J, JIAO W, et al. MINet: multi-scale input network for fundus microvascular segmentation[J]. Computers in Biology and Medicine, 2023, 154: 106608. [42] ZHANG J, ZHANG Y, XU X. Pyramid U-Net for retinal vessel segmentation[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 1125-1129. [43] SAINI S, AGRAWAL G. (M)SLAe-Net: multi-scale multi-level attention embedded network for retinal vessel segmentation[C]//Proceedings of the 2021 IEEE 9th International Conference on Healthcare Informatics, Victoria, Aug 9-12, 2021. Piscataway: IEEE, 2021: 219-223. [44] SUN M, LI K, QI X, et al. Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images[J]. Journal of Visual Communication and Image Representation, 2021, 77: 103134. [45] CHEN Y, JIANG Y, YUAN Y, et al. Retinal microvascular segmentation algorithm based on multi-scale attention mechanism[C]//Proceedings of the 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence, Changsha, Oct 28-30, 2022: 72-77. [46] TAN Y, ZHAO S X, YANG K F, et al. A lightweight network guided with differential matched filtering for retinal vessel segmentation[J]. Computers in Biology and Medicine, 2023, 160: 106924. [47] WEI X, YANG K, BZDOK D, et al. Orientation and context entangled network for retinal vessel segmentation[J]. Expert Systems with Applications, 2023, 217: 119443. [48] LI J, GAO G, LIU Y, et al. MAGF-Net: a multiscale attention-guided fusion network for retinal vessel segmentation[J]. Measurement, 2023, 206: 112316. [49] DEARI S, OKSUZ I, ULUKAYA S. Block attention and switchable normalization based deep learning framework for segmentation of retinal vessels[J]. IEEE Access, 2023, 11: 38263-38274. [50] SINGH L K, KHANNA M, THAWKAR S, et al. Deep-learning based system for effective and automatic blood vessel segmentation from retinal fundus images[J]. Multimedia Tools and Applications, 2023, 83: 6005-6049. [51] ALVARADO-CARRILLO D E, DALMAU-CEDE?O O S. Width attention based convolutional neural network for retinal vessel segmentation[J]. Expert Systems with Applications, 2022, 209: 118313. [52] LIU S, GUAN J, HE Y, et al. RCU-Net: a novel network for retinal vessel segmentation[C]//Proceedings of the 2nd International Conference on Advanced Algorithms and Signal Image Processing, Hulun Buir, 2022. [53] LI D, PENG L, PENG S, et al. Retinal vessel segmentation by using AFNet[J]. The Visual Computer, 2023, 39(5): 1929-1941. [54] GOBINATH C, GOPINATH M P. Attention aware fully convolutional deep learning model for retinal blood vessel segmentation[J]. Journal of Intelligent and Fuzzy Systems, 2023, 44: 6413-6423. [55] YANG D, ZHAO H, YU K, et al. NAUNet: lightweight retinal vessel segmentation network with nested connections and efficient attention[J]. Multimedia Tools and Applications, 2023, 82(16): 25357-25379. [56] ZHU Y, LI R, TENG S, et al. Multi-attention gate based U-net for retinal vessel segmentation[C]//Proceedings of the 2022 12th International Conference on Information Technology in Medicine and Education, Xiamen, Nov 18-20, 2022: 302-306. [57] 刘娜, 汪国强. SAF-Net:自注意力融合网络的视网膜血管分割[J]. 计算机工程与应用, 2023, 59(14): 217-223. LIU N, WANG G Q. SAF-Net:self attention fusion network for retinal vessel segmentation[J]. Computer Engineering and Applications, 2023, 59(14): 217-223. [58] HU H, LIU Z. Retinal vessel segmentation based on recurrent convolutional skip connection U-Net[C]//Proceedings of the 2021 4th International Conference on Intelligent Autonomous Systems, Wuhan, May 14-16, 2021: 65-71. [59] KARLSSON R A, HARDARSON S H. Artery vein classification in fundus images using serially connected U-Nets[J]. Computer Methods and Programs in Biomedicine, 2022, 216: 106650. [60] HUANG Z, SUN M, LIU Y, et al. CSAUNet: a cascade self-attention U-shaped network for precise fundus vessel segmentation[J]. Biomedical Signal Processing and Control, 2022, 75: 103613. [61] RAHMAN A A, BISWAL B, PAPPU G P, et al. Robust segmentation of vascular network using deeply cascaded AReN-UNet[J]. Biomedical Signal Processing and Control, 2021, 69: 102953. [62] SHAO H C, CHEN C Y, CHANG M H, et al. Retina-TransNet: a gradient-guided few-shot retinal vessel segmentation net[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4902-4913. [63] LI J, GAO G, YANG L, et al. GDF-Net: a multi-task symmetrical network for retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 2023, 81: 104426. [64] SETHURAMAN S, GOPI V P. Staircase-Net: a deep learning based architecture for retinal blood vessel segmentation[J]. Sadhana, 2022, 47: 191. [65] TANG P, LIANG Q, YAN X, et al. Multi-proportion channel ensemble model for retinal vessel segmentation[J]. Computers in Biology and Medicine, 2019, 111: 103352. [66] KAR M K, NEOG D R, NATH M K. Retinal vessel segmentation using multi-scale residual convolutional neural network (MSR-Net) combined with generative adversarial networks[J]. Circuits, Systems, and Signal Processing, 2022, 42: 1206-1235. [67] ZHOU Y, CHEN Z, SHEN H, et al. A refined equilibrium generative adversarial network for retinal vessel segmentation[J]. Neurocomputing, 2021, 437: 118-130. [68] 张思杰, 方翔, 魏赋. 基于GAN的少样本视网膜血管分割研究[J].电子测量与仪器学报, 2021, 35(11): 132-142. ZHANG S J, FANG X, WEI F. Research on retinal vascular segmentation based on GAN using few samples[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(11): 132-142. [69] SAXENA S, LAL K, JOSHI S. Retinal vessel segmentation using blending-based conditional generative adversarial networks[C]//Proceedings of the 2021 International Conference on Computer Analysis of Images and Patterns. Cham:Springer, 2021: 135-144. [70] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [71] LIN J, HUANG X, ZHOU H, et al. Stimulus-guided adaptive transformer network for retinal blood vessel segmentation in fundus images[J]. Medical Image Analysis, 2023, 89: 102929. [72] ZHANG H, NI W, LUO Y, et al. TUnet-LBF: retinal fundus image fine segmentation model based on transformer Unet network and LBF[J]. Computers in Biology and Medicine, 2023, 159: 106937. [73] SHI C, XU C, HE J, et al. Graph-based convolution feature aggregation for retinal vessel segmentation[J]. Simulation Modelling Practice and Theory, 2022, 121: 102653. [74] ZHONG X, ZHANG H, LI G, et al. Do you need sharpened details? Asking MMDC-Net: multi-layer multi-scale dilated convolution network for retinal vessel segmentation[J]. Comp-uters in Biology and Medicine, 2022, 150: 106198. [75] ZHU Z, AN Q, WANG Z, et al. ILU-Net: inception-like U-Net for retinal vessel segmentation[J]. Optik, 2022, 260: 169012. [76] CHALA M, NSIRI B, EL YOUSFI ALAOUI M H, et al. An automatic retinal vessel segmentation approach based on convolutional neural networks[J]. Expert Systems with Applications, 2021, 184: 115459. [77] DING J, ZHANG Z, TANG J, et al. A multichannel deep neural network for retina vessel segmentation via a fusion mechanism[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9. [78] KARAALI A, DAHYOT R, SEXTON D J. DR-VNet: retinal vessel segmentation via dense residual UNet[C]//Proceedings of the 3rd International Conference on Pattern Recognition and Artificial Intelligence. Cham: Springer, 2022: 198-210. [79] WANG C, XU R, XU S, et al. DA-Net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation[C]//Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 528-538. [80] LIU Y, SHEN J, YANG L, et al. ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images[J]. Biomedical Signal Processing and Control, 2023, 79: 104087. [81] PRIYADARSINI M J P, S S, JABEENA A, et al. Retinal vessel segmentation using UNet++[C]//Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies, Vellore, May 5-6, 2023: 1-5. [82] YANG M, YE Y, YE K, et al. Retinal vessel segmentation in medical diagnosis using multi-scale attention generative adversarial networks[J]. Mobile Networks and Applications, 2023. [83] DU H, ZHANG X, SONG G, et al. Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method[J]. Computers in Biology and Medicine, 2023, 153: 106416. [84] KUMAR A, AGRAWAL R K, JOSEPH L. IterMiUnet: a lightweight architecture for automatic blood vessel segmentation[J]. Multimedia Tools and Applications, 2023, 82(28): 43207-43231. [85] JAYACHANDRAN A, SHUNMUGARATHINAM G, PERUMAL T S R. Retinal vessels segmentation of colour fundus images using two stages cascades convolutional neural networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(7): 9305-9315. [86] MOHAMMEDHASAN M, UGUZ H. A new deeply convolutional neural network architecture for retinal blood vessel segmentation[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 35. [87] SOOMRO T A, AFIFI A J, GAO J, et al. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation[J]. Expert Systems with Applications, 2019, 134: 36-52. [88] BUDAK ü, C?MERT Z, ??BUK M, et al. DCCMED-Net: densely connected and concatenated multi encoder-decoder CNNs for retinal vessel extraction from fundus images[J]. Medical Hypotheses, 2020, 134: 109426. [89] TIAN C, FANG T, FAN Y, et al. Multi-path convolutional neural network in fundus segmentation of blood vessels[J]. Biocybernetics and Biomedical Engineering, 2020, 40(2): 583-595. [90] ZHAO R, LI Q, WU J, et al. A nested U-shape network with multi-scale upsample attention for robust retinal vascular segmentation[J]. Pattern Recognition, 2021, 120: 107998. [91] GUO F, LI W, KUANG Z, et al. MES-Net: a new network for retinal image segmentation[J]. Multimedia Tools and Applications, 2021, 80(10): 14767-14788. |
[1] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[2] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[3] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[4] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[5] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[6] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[7] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[8] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[9] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[10] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[11] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[12] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[13] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[14] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[15] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/