
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2559-2586.DOI: 10.3778/j.issn.1673-9418.2411013
• Frontiers·Surveys • Previous Articles Next Articles
LI Jiale, LI Leixiao, LIN Hao, DU Jinze, SHI Jianping, LIU Zhexu
Online:2025-10-01
Published:2025-09-30
李嘉乐,李雷孝,林浩,杜金泽,史建平,刘哲旭
LI Jiale, LI Leixiao, LIN Hao, DU Jinze, SHI Jianping, LIU Zhexu. Review of Hierarchical Research on Malicious Transactions in Blockchain[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2559-2586.
李嘉乐, 李雷孝, 林浩, 杜金泽, 史建平, 刘哲旭. 区块链恶意交易的层次化研究综述[J]. 计算机科学与探索, 2025, 19(10): 2559-2586.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2411013
| [1] SAAD M, SPAULDING J, NJILLA L, et al. Exploring the attack surface of blockchain: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1977-2008. [2] LIN I C, LIAO T C. A survey of blockchain security issues and challenges[J]. International Journal of Network Security, 2017, 19(5): 653-659. [3] CONTI M, KUMAR E S, LAL C, et al. A survey on security and privacy issues of Bitcoin[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3416-3452. [4] ZAGHLOUL E, LI T T, MUTKA M W, et al. Bitcoin and blockchain: security and privacy[J]. IEEE Internet of Things Journal, 2020, 7(10): 10288-10313. [5] AGGARWAL S, KUMAR N. Attacks on blockchain[J]. Advances in Computers, 2021, 121: 399-410. [6] WEN Y J, LU F Y, LIU Y F, et al. Attacks and countermeasures on blockchains: a survey from layering perspective[J]. Computer Networks, 2021, 191: 107978. [7] CERF V, KAHN R. A protocol for packet network intercommunication[J]. IEEE Transactions on Communications, 1974, 22(5): 637-648. [8] 王群, 李馥娟, 倪雪莉, 等. 域间路由安全增强及区块链技术的应用研究[J]. 计算机科学与探索, 2024, 18(12): 3144-3174. WANG Q, LI F J, NI X L, et al. Research on blockchain-based inter-domain routing security enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3144-3174. [9] POSTEL J. RFC768: User datagram protocol[S]. Internet Society, 1980: 1-3. [10] TRAMèR F, BONEH D, PATERSON K. Remote side-channel attacks on anonymous transactions[C]//Proceedings of the 29th USENIX Security Symposium, 2020: 2739-2756. [11] MITSEVA A, PANCHENKO A, ENGEL T. The state of affairs in BGP security: a survey of attacks and defenses[J]. Computer Communications, 2018, 124: 45-60. [12] APOSTOLAKI M, ZOHAR A, VANBEVER L. Hijacking Bitcoin: routing attacks on cryptocurrencies[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 375-392. [13] SENTANA I, IKRAM M, KAAFAR M. BlockJack: towards improved prevention of IP prefix hijacking attacks in inter-domain routing via blockchain[C]//Proceedings of the 18th International Conference on Security and Cryptography, 2021: 674-679. [14] ZLOMISLI? V, FERTALJ K, SRUK V. Denial of service attacks, defences and research challenges[J]. Cluster Computing, 2017, 20(1): 661-671. [15] ZARGAR S T, JOSHI J, TIPPER D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 2046-2069. [16] LAI G H, CHEN C M, JENG B C, et al. Ant-based IP traceback[J]. Expert Systems with Applications, 2008, 34(4): 3071-3080. [17] RAIKWAR M, GLIGOROSKI D. DoS attacks on blockchain ecosystem[C]//Proceedings of the European Conference on Parallel Processing. Cham: Springer, 2021: 230-242. [18] FANG L M, ZHAO B, LI Y, et al. Countermeasure based on smart contracts and AI against DoS/DDoS attack in 5G circumstances[J]. IEEE Network, 2020, 34(6): 54-61. [19] JIA B, LIANG Y Q. Anti-D chain: a lightweight DDoS attack detection scheme based on heterogeneous ensemble learning in blockchain[J]. China Communications, 2020, 17(9): 11-24. [20] ABOU EL HOUDA Z, HAFID A S, KHOUKHI L. Cochain-SC: an intra-and inter-domain DDoS mitigation scheme based on blockchain using SDN and smart contract[J]. IEEE Access, 2019, 7: 98893-98907. [21] HEILMAN E, KENDLER A, ZOHAR A, et al. Eclipse attacks on Bitcoin??s peer-to-peer network[C]//Proceedings of the 24th USENIX Security Symposium, 2015: 129-144. [22] XU G Q, GUO B J, SU C H, et al. Am I eclipsed? A smart detector of eclipse attacks for Ethereum[J]. Computers & Security, 2020, 88: 101604. [23] ALANGOT B, REIJSBERGEN D, VENUGOPALAN S, et al. Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1659-1672. [24] VINTA S R, PATEL S A, SAMEEN A Z, et al. Dynamic defense model against eclipse attacks in proof-of-work blockchain systems[J]. Procedia Computer Science, 2024, 235: 1202-1212. [25] DOUCEUR J R. The Sybil attack[C]//Proceedings of the International Workshop on Peer-to-Peer Systems. Berlin, Heidelberg: Springer, 2002: 251-260. [26] WANG Y T, TAN M S. Defense against Sybil attack in blockchain based on improved consensus algorithm[C]//Proceedings of the 2023 IEEE International Conference on Control, Electronics and Computer Technology. Piscataway: IEEE, 2023: 986-989. [27] SWATHI P, MODI C, PATEL D. Preventing Sybil attack in blockchain using distributed behavior monitoring of miners[C]//Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies. Piscataway: IEEE, 2019: 1-6. [28] DAVIS C R, FERNANDEZ J M, NEVILLE S, et al. Sybil attacks as a mitigation strategy against the storm botnet[C]//Proceedings of the 2008 3rd International Conference on Malicious and Unwanted Software. Piscataway: IEEE, 2008: 32-40. [29] 王群, 李馥娟, 王振力, 等. 区块链原理及关键技术[J]. 计算机科学与探索, 2020, 14(10): 1621-1643. WANG Q, LI F J, WANG Z L, et al. Principle and core technology of blockchain[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. [30] MERKLE R C. Protocols for public key cryptosystems[C]//Proceedings of the 1980 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 1980: 122. [31] 刘哲旭, 李雷孝, 刘东江, 等. 智能合约漏洞检测与修复研究综述[J]. 计算机科学与探索, 2025, 19(4): 854-876. LIU Z X, LI L X, LIU D J, et al. Review of smart contract vulnerability detection and repair research[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. [32] BUTERIN V. A next-generation smart contract and decentralized application platform[J]. Ethereum White Paper, 2014, 3(37): 1-36. [33] GAROFFOLO A, STABILINI P, VIGLIONE R, et al. A penalty system for delayed block submission[J]. Horizen, 2018: 1-7. [34] YANG X L, CHEN Y, CHEN X H. Effective scheme against 51% attack on proof-of-work blockchain with history weighted information[C]//Proceedings of the 2019 IEEE International Conference on Blockchain. Piscataway: IEEE, 2019: 261-265. [35] APONTE-NOVOA F A, OROZCO A L S, VILLANUEVA-POLANCO R, et al. The 51% attack on blockchains: a mining behavior study[J]. IEEE Access, 2021, 9: 140549-140564. [36] EYAL I, SIRER E G. Majority is not enough[J]. Communications of the ACM, 2018, 61(7): 95-102. [37] G?BEL J, KEELER H P, KRZESINSKI A E, et al. Bitcoin blockchain dynamics: the selfish-mine strategy in the presence of propagation delay[J]. Performance Evaluation, 2016, 104: 23-41. [38] YANG R K, CHANG X L, MI?I? J, et al. Assessing blockchain selfish mining in an imperfect network: honest and selfish miner views[J]. Computers & Security, 2020, 97: 101956. [39] MADHUSHANIE N, VIDANAGAMACHCHI S, ARACH-CHILAGE N. BA-flag: a self-prevention mechanism of selfish mining attacks in blockchain technology[J]. International Journal of Information Security, 2024, 23(4): 2783-2792. [40] CHEN Y G, YANG L, TIAN L W. A study of orphan blocks in public blockchain[C]//Proceedings of the 2022 IEEE 2nd International Conference on Data Science and Computer Application. Piscataway: IEEE, 2022: 220-223. [41] JHA B, DAS B. The study of the issues related to orphan blocks[C]//Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing. Singapore: Springer, 2022: 355-363. [42] SOLAT S, POTOP-BUTUCARU M. Brief announcement: zeroblock: timestamp-free prevention of block-withholding attack in Bitcoin[C]//Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems. Cham: Springer, 2017: 356-360. [43] MASTEIKA S, REB?DYS E, DRIAUNYS K, et al. Bitcoin double-spending risk and countermeasures at physical retail locations[J]. International Journal of Information Management, 2024, 79: 102727. [44] WANG J L, LIU Q, SONG B Y. Blockchain-based multi-malicious double-spending attack blacklist management model[J]. The Journal of Supercomputing, 2022, 78(12): 14726-14755. [45] ZHENG J, HUANG H W, LI C L, et al. Revisiting double-spending attacks on the Bitcoin blockchain: new findings[C]//Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service. Piscataway: IEEE, 2021: 1-6. [46] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. [47] WANG W, SONG J J, XU G Q, et al. ContractWard: automated vulnerability detection models for ethereum smart contracts[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133-1144. [48] HE Y Q, DONG H J, WU H G, et al. Formal analysis of reentrancy vulnerabilities in smart contract based on CPN[J]. Electronics, 2023, 12(10): 2152. [49] LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1296-1310. [50] ZHANG L J, CHEN W J, WANG W Z, et al. CBGRU: a detection method of smart contract vulnerability based on a hybrid model[J]. Sensors, 2022, 22(9): 3577. [51] NIKOLI? I, KOLLURI A, SERGEY I, et al. Finding the greedy, prodigal, and suicidal contracts at scale[C]//Proceedings of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 653-663. [52] RODLER M, LI W, KARAME G O, et al. Sereum: protecting existing smart contracts against re-entrancy attacks[EB/OL]. [2024-10-04]. https://arxiv.org/abs/1812.05934. [53] KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018: 1-12. [54] YANG H, HUANG L Q, LUO C F, et al. Research on intelligent security protection of privacy data in government cyberspace[C]//Proceedings of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics. Piscataway: IEEE, 2020: 284-288. [55] XU Y J, HU G R, YOU L, et al. A novel machine learning-based analysis model for smart contract vulnerability[J]. Security and Communication Networks, 2021, 2021(1): 5798033. [56] JIAO T Y, XU Z Y, QI M F, et al. A survey of ethereum smart contract security: attacks and detection[J]. Distributed Ledger Technologies: Research and Practice, 2024, 3(3): 1-28. [57] DING M, HE H, QIAO R, et al. RIPPB: a robust and improved PBFT protocol for blockchain[C]//Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2022: 384-389. [58] 刘昊哲, 李莎莎, 吕伟龙, 等. 基于信誉度的主从多链区块链共识机制[J]. 南京理工大学学报, 2020, 44(3): 325-331. LIU H Z, LI S S, LV W L, et al. Master-slave multiple-blockchain consensus based on credibility[J]. Journal of Nanjing University of Science and Technology, 2020, 44(3): 325-331. [59] SUN H Y, RUAN N, SU C H. How to model the bribery attack: a practical quantification method in blockchain[C]//Proceedings of the 25th European Symposium on Research in Computer Security. Cham: Springer, 2020: 569-589. [60] WANG J, CAI Y Q, HE J Y. A new threshold signature scheme to withstand the conspiracy attack[C]//Proceedings of the 2010 International Conference on Computational Intelligence and Security. Piscataway: IEEE, 2010: 343-346. [61] QURESHI B, MIN G Y, KOUVATSOS D. Countering the collusion attack with a multidimensional decentralized trust and reputation model in disconnected MANETs[J]. Multimedia Tools and Applications, 2013, 66(2): 303-323. [62] HU Q, WANG S L, CHENG X Z. A game theoretic analysis on block withholding attacks using the zero-determinant strategy[C]//Proceedings of the 2019 IEEE/ACM 27th International Symposium on Quality of Service. Piscataway: IEEE, 2019: 1-10. [63] LIU X, HUANG Z, WANG Q, et al. An evolutionary game theory-based method to mitigate block withholding attack in blockchain system[J]. Electronics, 2023, 12(13): 2808. [64] CHANG S Y, PARK Y. Silent timestamping for blockchain mining pool security[C]//Proceedings of the 2019 International Conference on Computing, Networking and Communications. Piscataway: IEEE, 2019: 1-5. [65] SCHAFFNER T. Scaling public blockchains[D]. Basel: University of Basel, 2021. [66] SHENG P, XUE B, KANNAN S, et al. ACeD: scalable data availability oracle[C]//Proceedings of the 25th International Conference on Financial Cryptography and Data Security. Berlin, Heidelberg: Springer, 2021: 299-318. [67] MITRA D, TAUZ L, DOLECEK L. Graph coded merkle tree: mitigating data availability attacks in blockchain systems using informed design of polar factor graphs[J]. IEEE Journal on Selected Areas in Information Theory, 2023, 4: 434-452. [68] DZIEMBOWSKI S, FAUST S, HOSTáKOVá K. General state channel networks[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 949-966. [69] DZIEMBOWSKI S, ECKEY L, FAUST S, et al. Multi-party virtual state channels[C]//Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer, 2019: 625-656. [70] XU C, ZHANG C, XU J, et al. SlimChain: scaling blockchain transactions through off-chain storage and parallel processing[J]. Proceedings of the VLDB Endowment, 2021, 14(11): 2314-2326. [71] COLEMAN J, HORNE L, LI X J. Counterfactual: generalized state channels[EB/OL]. [2024-10-04]. http://l4.ventures/ papers/statechannels.pdf. [72] ZHANG J S, GAO J B, LI Y, et al. Xscope: hunting for cross-chain bridge attacks[C]//Proceedings of the 37th IEEE/ ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-4. [73] XIE T C, ZHANG J H, CHENG Z R, et al. zkBridge: trustless cross-chain bridges made practical[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2022: 3003-3017. [74] HERLIHY M. Atomic cross-chain swaps[C]//Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing. New York: ACM, 2018: 245-254. [75] SHADAB N, HOUSHMAND F, LESANI M. Cross-chain transactions[C]//Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2020: 1-9. [76] THIBAULT L T, SARRY T, HAFID A S. Blockchain scaling using rollups: a comprehensive survey[J]. IEEE Access, 2022, 10: 93039-93054. [77] KALODNER H, GOLDFEDER S, CHEN X, et al. Arbitrum: scalable, private smart contracts[C]//Proceedings of the 27th USENIX Security Symposium, 2018: 1353-1370. [78] MAMAGEISHVILI A, FELTEN E W. Incentive schemes for rollup validators[C]//Proceedings of the 4th International Conference on Mathematical Research for Blockchain Economy. Cham: Springer, 2023: 48-61. [79] GORZNY J, LIN P A, DERKA M. Ideal properties of rollup escape hatches[C]//Proceedings of the 3rd International Workshop on Distributed Infrastructure for the Common Good. New York: ACM, 2022: 7-12. [80] DAIAN P, GOLDFEDER S, KELL T, et al. Flash boys 2.0: frontrunning, transaction reordering, and consensus instability in decentralized exchanges[EB/OL]. [2024-10-04]. https://arxiv.org/abs/1904.05234. [81] TORRES C F, CAMINO R. Frontrunner jones and the raiders of the dark forest: an empirical study of frontrunning on the Ethereum block-chain[C]//Proceedings of the 30th USENIX Security Symposium, 2021: 1343-1359. [82] KELKAR M, ZHANG F, GOLDFEDER S, et al. Order-fairness for Byzantine consensus[C]//Proceedings of the 40th Annual International Cryptology Conference. Cham: Springer, 2020: 451-480. [83] HEIMBACH L, WATTENHOFER R. Eliminating sandwich attacks with the help of game theory[C]//Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2022: 153-167. [84] LI D Z, ZHANG K J, WANG L, et al. A Geth-based real-time detection system for sandwich attacks in Ethereum[J]. Discover Computing, 2024, 27(1): 11. [85] QIN K H, ZHOU L Y, LIVSHITS B, et al. Attacking the DeFi ecosystem with flash loans for fun and profit[C]//Proceedings of the 25th International Conference on Financial Cryptography and Data Security. Cham: Springer, 2021: 3-32. [86] CAO Y, ZOU C, CHENG X. Flashot: a snapshot of flash loan attack on DeFi ecosystem[EB/OL]. [2024-10-04]. https://arxiv.org/abs/2102.00626. [87] CHEN W L, GUO X F, CHEN Z G, et al. Phishing scam detection on ethereum: towards financial security for blockchain ecosystem[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 4506-4512. [88] WU J J, YUAN Q, LIN D, et al. Who are the phishers?phishing scam detection on ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156-1166. [89] BIRSAN A. Dependency confusion: how I hacked into apple, Microsoft and dozens of other companies[EB/OL]. [2024-10-04]. https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610. [90] MEHAR M I, SHIER C L, GIAMBATTISTA A, et al. Understanding a revolutionary and flawed grand experiment in blockchain[J]. Journal of Cases on Information Technology, 2019, 21(1): 19-32. [91] WANG S, DING W W, LI J J, et al. Decentralized autonomous organizations: concept, model, and applications[J]. IEEE Transactions on Computational Social Systems, 2019, 6(5): 870-878. [92] RIKKEN O, JANSSEN M, KWEE Z. Governance challenges of blockchain and decentralized autonomous organizations[J]. Information Polity, 2019, 24(4): 397-417. |
| [1] | FENG Xinhao, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao. Review of Access Control Research for Blockchain Data Sharing [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 1981-2000. |
| [2] | WANG Na, ZHANG Xinhai, CHANG Yaming. Network Security Situation Prediction Based on Data Decomposition and Multi-model Switching [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1958-1968. |
| [3] | LIU Yong, DENG Xiaohong, LIU Lihui, SHI Yiran, ZHANG Li. EG-DPoS: Optimized DPoS Consensus Algorithm Based on Evolutionary Game [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1379-1394. |
| [4] | LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping. Review of Smart Contract Vulnerability Detection and Repair Research [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. |
| [5] | LIN Jiaxi, QIAN Qiuyan, ZENG Jianping, ZHANG Weidong. Surname Password Guessing Method Based on GPT-2 [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1087-1094. |
| [6] | LI Kun, LI Bin, ZHU Wenjing, ZHOU Qinglei. Cross-Architecture Vulnerability Detection Combining Semantic and Attribute Feature [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 787-801. |
| [7] | LIU YI, WU Shiwei, JIANG Chengjie, DONG Huiting, WU Yinmiao, GUAN Xinru, JIANG Sheng, ZHANG Lei. Research Status of Consensus Mechanisms in Federated Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2913-2934. |
| [8] | HUANG Anbo, QU Haicheng, JIANG Qingling. Vulnerability Detection Method Integrating Global Graph Topology and Multi-scale Masked Convolution [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 3072-3082. |
| [9] | NI Xueli, WANG Qun, MA Zhuo. Research Progress on Blockchain-Based DNS Security Enhancement Technology [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2587-2614. |
| [10] | XU Zhiwei, LI Hailong, LI Bo, LI Tao, WANG Jiatai, XIE Xueshuo, DONG Zehui. Survey of AIGC Large Model Evaluation: Enabling Technologies, Vulnerabilities and Mitigation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2293-2325. |
| [11] | WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959. |
| [12] | LU Yu, WANG Jingyu, LIU Lixin, WANG Haonan. Auction Mechanism Driven Data Incentive Sharing Solution [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2203-2220. |
| [13] | MENG Zhen, REN Guanyu, WAN Jianxiong, LI Leixiao. Research on Distributed V2V Computation Offloading Method for Internet of Vehicles Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1923-1934. |
| [14] | ZHANG Xuan, LI Leixiao, DU Jinze, SHI Jianping. Overview of Covert Channel Research in Blockchain Environment [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1438-1456. |
| [15] | ZI Lingling, CONG Xin. Blockchain Transactions Using Attached Blocks and Discrete Token Negotiation for Delay-Tolerant Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1357-1367. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/