Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (6): 1421-1437.DOI: 10.3778/j.issn.1673-9418.2312062
• Frontiers·Surveys • Previous Articles Next Articles
JIANG Jian, ZHANG Qi, WANG Caiyong
Online:
2024-06-01
Published:
2024-05-31
江健,张琪,王财勇
JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437.
江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2312062
[1] BOWYER K W, BURGE M J. Handbook of iris recognition[M]. Berlin, Heidelberg: Springer, 2016: 1-20. [2] DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161. [3] WILDES R P, ASMUTH J C, GREEN G L, et al. A machine-vision system for iris recognition[J]. Machine Vision & Applications, 1996, 9(1): 1-8. [4] BOLES W W, BOASHASH B. A human identification technique using images of the iris and wavelet transform[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 1185-1188. [5] KUMAR B, XIE C Y, THORNTON J. Iris verification using correlation filters[C]//Proceedings of the 4th International Conference on Audio-and Video-Based Biometrie Person Authentication. Berlin, Heidelberg: Springer, 2003: 697-705. [6] SUN Z N, TAN T N. Ordinal measures for iris recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(12): 2211-2226. [7] NGUYEN K, PROENCCA X, FERNANDEZ A. Deep lear-ning for iris recognition: a survey[J]. arXiv:2210.05866, 2022. [8] RONNEBERGER O, PHILIPP F, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2015: 234-241. [9] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2980-2988. [10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proce-ssing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [11] PROENCA H, FILIPE S, SANTOS R, et al. The UBIRIS. v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32: 1529-1535. [12] CASIA. CASIA iris database V4[EB/OL]. [2023-09-27]. http:// biometrics.idealtest.org/dbDetailForUser.do?id=14. [13] DONG W, SUN Z, TAN T. A design of iris recognition system at a distance[C]//Proceedings of the 2009 Chinese Conference on Pattern Recognition, Nanjing, Nov 4-6, 2009: 1-5. [14] KUMAR A, PASSI A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026. [15] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [16] LOZEJ J, MEDEN B, STRUC V, et al. End-to-end iris segmentation using U-Net[C]//Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence, San Carlos, Jul 18-20, 2018. Piscataway: IEEE, 2018: 1-6. [17] LIAN S, LUO Z, ZHONG Z, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296-304. [18] WU X Q, ZHAO L. Study on iris segmentation algorithm based on dense U-Net[J]. IEEE Access, 2019, 7: 123959-123968. [19] ZHANG W, LU X Q, GU Y, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089. [20] WANG C Y, MUHAMMAD J, WANG Y L, et al. Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2944-2959. [21] JHA R R, JASWAL G, GUPTA D, et al. PixISegNet: pixel-level iris segmentation network using convolutional encoder-decoder with stacked hourglass bottleneck[J]. IET Biometrics, 2020, 9: 11-24. [22] LI Y H, ASLAM M, PUTRI W R, et al. Robust iris segmentation algorithm in non-cooperative environments using interleaved residual U-Net[J]. Sensors, 2021, 21(4): 1434. [23] MIRON C, PASARICA A, MANTA V, et al. Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network[J]. Multimedia Tools and Applications, 2022, 81: 14961-14977. [24] SARDAR M, BANERJEE S, MITRA S. Iris segmentation using interactive deep learning[J]. IEEE Access, 2020, 8: 219322-219330. [25] 霍光, 林大为, 刘元宁, 等. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. HUO G, LIN D W, LIU Y N, et al. Lightweight iris segmentation model based on multiscale feature and attention mecha-nism[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2591-2600. [26] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. [27] ZHOU Z W, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11. [28] HUO G, LIN D, YUAN M. Iris segmentation method based on improved UNet++[J]. Multimedia Tools and Applications, 2022, 81(28): 41249-41269. [29] TAN M X, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 10096-10106. [30] AHMAD S, FULLER B. Unconstrained iris segmentation using convolutional neural networks[C]//Proceedings of the 14th Asian Conference on Computer Vision. Cham: Springer, 2018: 450-466. [31] 史雪玉. 基于深度卷积网络的虹膜分割与识别方法研究[D]. 大连: 大连理工大学, 2022. SHI X Y. Research on Iris segmentation and recognition method based on deep convolutional network[D]. Dalian: Dalian University of Technology, 2022. [32] 敬红燕, 彭静, 吴锡, 等. 基于Mask R-CNN卷积神经网络的虹膜分割[J]. 计算机系统应用, 2023, 32(2): 83-93. JING H Y, PENG J, WU X, et al. Mask R-CNN-embedded convolutional neural network for iris segmentation[J]. Computer Systems & Applications, 2023, 32(2): 83-93. [33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [34] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [35] SUN Y, LU Y, LIU Y, et al. Towards more accurate and complete iris segmentation using hybrid transformer U-Net[C]//Proceedings of the 2022 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2022: 1-10. [36] 顾正杰, 王财勇, 田启川, 等. 结合Transformer与对称型编解码器的噪声虹膜图像分割方法[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1887-1898. GU Z J, WANG C Y, TIAN Q C, et al. A symmetrical encoder-decoder network with transformer for noise-robust iris segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(12): 1887-1898. [37] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [38] MENG Y, BAO T. Towards more accurate and complete heterogeneous iris segmentation using a hybrid deep learning approach[J]. Journal of Imaging, 2022, 8: 246. [39] KRIZHEVSKY A, SUTSKEVER L, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [40] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [41] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9. [42] HE K M, ZHANG X, SUN J, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 770-778. [43] HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 2261-2269. [44] ZHANG Q, LI H, SUN Z, et al. Deep feature fusion for iris and periocular biometrics on mobile devices[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 2897-2912. [45] BOWYER K, PATRICK J F. The ND-IRIS-0405 iris image dataset[J]. arXiv:1606.04853, 2016. [46] GANGWAR A, JOSHI A. DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 2301-2305. [47] PROENCA H. DeepGabor: a learning-based framework to augment iriscodes permanence[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3748-3757. [48] NGUYEN K, FOOKES C, SRIDHA S, et al. Complex-valued iris recognition network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 182-196. [49] ZHAO Z J, KUMAR A. A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features[J]. Pattern Recognition, 2019, 93: 546-557. [50] WANG K, KUMAR A. Toward more accurate iris recognition using dilated residual features[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12): 3233-3245. [51] ZHAO T, LIU Y, HUO G, et al. A deep learning iris recognition method based on capsule network architecture[J]. IEEE Access, 2019, 7: 49691-49701. [52] 袁一航. 基于ResNet的虹膜识别算法研究及系统实现[D]. 长春: 吉林大学, 2023. YUAN Y H. Research and system implementation of iris recognition algorithm based on ResNet[D]. Changchun: Jilin University, 2023. [53] REN M, WANG Y L, SUN Z N, et al. Dynamic graph representation for occlusion handling in biometrics[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 11940-11947. [54] WEI J Z, WANG Y L, WU X, et al. Contrastive uncertainty learning for iris-recognition with insufficient labeled samples[C]//Proceedings of the 2021 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2021: 1-8. [55] WEI J, WANG Y, HUANG H, et al. Contextual measures for iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 57-70. [56] GANGWAR A, JOSHI A, RAGHAVENDRA R, et al. DeepIrisNet2: learning deep-iriscodes from scratch for segmentation-robust visible wavelength and near infrared iris recognition[J]. arXiv:1902.05390, 2019. [57] HSIAO C S, FAN C P. EfficientNet based iris biometric recognition methods with pupil positioning by U-Net[C]//Proceedings of the 2021 3rd International Conference on Computer Communication and the Internet. Piscataway: IEEE, 2021: 1-5. [58] NGUYEN K, FOOKES C, SRIDHARAN S. Constrained design of deep iris networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7166-7175. [59] 田玉通. 基于轻量化神经网络的虹膜识别方法研究[D]. 北京: 北方工业大学, 2022. TIAN Y T. Research on iris recognition method based on lightweight neural network[D]. Beijing: North China University of Technology, 2022. [60] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 499-515. [61] WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5265-5274. [62] DENG J K, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694. [63] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 1735-1742. [64] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 815-823. [65] LIU W Y, WEN Y D, YU Z D, et al. Large-margin softmax loss for convolutional neural networks[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, Jun 19-24, 2016: 507-516. [66] LIU N F, ZHANG M, LI H, et al. DeepIris[J]. Pattern Recognition Letters, 2015, 82: 154-161. [67] WANG M, DENG W H. Deep face recognition: a survey[J]. Neurocomputing, 2018, 429: 215-244. [68] OMELINA L, GOGA J, JANSEN B, et al. A survey of iris datasets[J]. Image and Vision Computing, 2021, 108: 104109. [69] SHAH S, ROSS A. Generating synthetic irises by feature agglomeration[C]//Proceedings of the 2006 International Conference on Image Processing. Piscataway: IEEE, 2006: 317-320. [70] ZUO J, SCHMID N A, CHEN X. On generation and analysis of synthetic iris images[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(1): 77-90. [71] SHARMA A, VERMA S, VATSA M, et al. On cross spectral periocular recognition[C]//Proceedings of the 2014 IEEE International Confenrce on Image Processing. Piscataway: IEEE, 2014: 5007-5011. [72] NALLA P R, KUMAR A. Toward more accurate iris recognition using cross-spectral matching[J]. IEEE Transactions on Image Processing, 2017, 26(1): 208-221. [73] HOSSEINI M S, ARAABI B N, SOLTANIAN-ZADEH H. Pattern for iris recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59: 792-804. [74] SEQUEIRA A, CHEN L, WILD P, et al. Cross-eyed-cross-spectral iris/periocular recognition database and competition[C]//Proceedings of the 2016 International Conference of the Biometrics Special Interest Group. Piscataway: IEEE, 2016: 249-256. [75] ICB. Dataset provided within the ICB competition on cross-sensor iris recognition[EB/OL]. [2023-09-27]. http://biometrics.idealtest.org/2015/csir2015.jsp. [76] SANTOS G, GRANCHO E, BERNARDO M V, et al. Fusing iris and periocular information for cross-sensor recognition[J]. Pattern Recognition Letters, 2015, 57: 52-59. [77] ZHANG M, ZHANG Q, SUN Z, et al. The BTAS competition on mobile iris recognition[C]//Proceedings of the 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2016: 1-7. [78] RATTANI A, DERAKHSHANI R, SARIPALLE S. ICIP 2016 competition on mobile ocular biometric recognition[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 320-324. [79] MARSICO M, NAPPI M, RICCIO D, et al. Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols[J]. Pattern Recognition Letters, 2015, 57: 17-23. [80] KARAKAYA M. Deep learning frameworks for off-angle iris recognition[C]//Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2018: 1-8. [81] JALILIAN E, KARAKAYA M. CNN-based off-angle iris segmentation and recognition[J]. IET Biometrics, 2021, 10(5): 518-535. [82] WEI J, WANG X, WU X, et al. Cross-sensor iris recognition using adversarial strategy and sensor-specific information[C]//Proceedings of the 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2019: 1-8. [83] MOSTOFA M, MOHAMADI S, DAWSON J, et al. Deep GAN-based cross-spectral cross-resolution iris recognition[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(4): 443-463. [84] 任家润, 沈文忠. 双重注意力机制下的跨光谱虹膜识别优化算法[J]. 计算机工程与应用, 2023, 59(1): 187-198. REN J R, SHEN W Z. Optimization algorithm of cross spectral iris recognition based on dual attention mechanism[J]. Computer Engineering and Applications, 2023, 59(1): 187-198. [85] WANG K, KUMAR A. Periocular-assisted multi-feature collaboration for dynamic iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 866-879. [86] LUO Z D, LI J, ZHU Y S. A deep feature fusion network based on multiple attention mechanisms for joint iris-periocular biometric recognition[J]. IEEE Signal Processing Letters, 2021, 28: 1060-1064. [87] LUO Z, GU Q, QI G, et al. A robust single-sensor face and iris biometric identification system based on multimodal feature extraction network[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1237-1244. [88] NADA A, HEYAM H. Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits[J]. Sensors, 2020, 20(19): 5523. |
[1] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[2] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[3] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[4] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[5] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[6] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[7] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[8] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[9] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[10] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[11] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[12] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[13] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[14] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[15] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/