
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2667-2682.DOI: 10.3778/j.issn.1673-9418.2412024
• Theory·Algorithm • Previous Articles Next Articles
TAN Yanchao, ZHOU Zihao, MA Guofang, WANG Shiping, HUANG Wei, YANG Carl, LI Tianrui
Online:2025-10-01
Published:2025-09-30
檀彦超,周子皓,马国芳,王石平,黄维,阳及,李天瑞
TAN Yanchao, ZHOU Zihao, MA Guofang, WANG Shiping, HUANG Wei, YANG Carl, LI Tianrui. Distribution-Aware Optimization for Robust Recommendations[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2667-2682.
檀彦超, 周子皓, 马国芳, 王石平, 黄维, 阳及, 李天瑞. 基于分布感知优化的高鲁棒推荐方法[J]. 计算机科学与探索, 2025, 19(10): 2667-2682.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2412024
| [1] 高云帆, 郁董卿, 王思琪, 等. 大语言模型驱动的选址推荐系统[J]. 计算机研究与发展, 2024, 61(7): 1681-1696. GAO Y F, YU D Q, WANG S Q, et al. Large language model powered site selection recommender system[J]. Journal of Computer Research and Development, 2024, 61(7): 1681-1696. [2] 于旭, 彭庆龙, 詹定佳, 等. 一种跨区域跨评分协同过滤推荐算法[J]. 计算机研究与发展, 2024, 61(12): 3134-3153. YU X, PENG Q L, ZHAN D J, et al. A cross-region and cross-rating collaborative filtering recommendation algorithm[J]. Journal of Computer Research and Development, 2024, 61(12): 3134-3153. [3] ZHAO J J, WANG W J, XU Y Y, et al. Plug-in diffusion model for embedding denoising in recommendation system[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024. [4] KIM Y, HASSAN A, WHITE R W, et al. Modeling dwell time to predict click-level satisfaction[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 193-202. [5] QUAN Y H, DING J T, GAO C, et al. Robust preference-guided denoising for graph based social recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1097-1108. [6] LU H T, ZHANG M, MA W Z, et al. Effects of user negative experience in mobile news streaming[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 705-714. [7] YANG B, LEE S, PARK S, et al. Exploiting various implicit feedback for collaborative filtering[C]//Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 639-640. [8] ZHU X J, DU Y T, MAO Y R, et al. Knowledge-refined denoi-sing network for robust recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 362-371. [9] FAN X Y, LIAN J X, ZHAO W X, et al. Ada-ranker: a data distribution adaptive ranking paradigm for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1599-1610. [10] LIU W M, CHEN C C, LIAO X T, et al. Federated probabilistic preference distribution modelling with compactness co-clustering for privacy-preserving multi-domain recommendation[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2023: 2206-2214. [11] COURTY N, FLAMARY R, HABRARD A, et al. Joint distribution optimal transportation for domain adaptation[C]//Advances in Neural Information Processing Systems 30, 2017: 3733-3742. [12] WANG W J, FENG F L, HE X N, et al. Denoising implicit feedback for recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 373-381. [13] DAMODARAN B B, KELLENBERGER B, FLAMARY R, et al. DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 467-483. [14] HUYNH V, ZHAO H, PHUNG D Q. OTLDA: a geometry-aware optimal transport approach for topic modeling[C]//Advances in Neural Information Processing Systems 33, 2020: 18573-18582. [15] LI M Y, HUANG S L, ZHANG L. OTCMR: bridging heterogeneity gap with optimal transport for cross-modal retrieval[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3216-3220. [16] CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport[C]//Advances?in?Neural?Information?Processing?Systems?26,?2013: 2292-2300. [17] LI X K, ZHANG Y H, HUANG Y H, et al. Multi-aspect knowledge-enhanced hypergraph attention network for conversational recommendation systems[J]. Knowledge-Based Systems, 2024, 299: 112119. [18] QIN Y F, JU W, WU H J, et al. Learning graph ODE for continuous-time sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3224-3236. [19] LIAN D F, LIU Q, CHEN E H. Personalized ranking with importance sampling[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 1093-1103. [20] MAO K L, ZHU J M, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1253-1262. [21] 顾军华, 李宁宁, 王鑫鑫, 等. 将行为依赖融入多任务学习的个性化推荐模型[J]. 计算机科学与探索, 2024, 18(1): 231-243. GU J H, LI N N, WANG X X, et al. Integrating behavioral dependencies into multi-task learning for personalized recommendations[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. [22] 李建斌, 钱自顺, 蔡学媛, 等. 跨境电商下基于商品属性-情境的推荐算法[J]. 系统工程学报, 2024, 39(3): 333-343. LI J B, QIAN Z S, CAI X Y, et al. Recommendation algorithm based on commodity attributes-context under cross-border e-commerce[J]. Journal of Systems Engineering, 2024, 39(3): 333-343. [23] 赵文涛, 田欢欢, 冯婷婷, 等. 融合相似度和预筛选模式的协同过滤算法[J]. 计算机科学与探索, 2023, 17(1): 217-227. ZHAO W T, TIAN H H, FENG T T, et al. Collaborative filtering algorithm combining similarity measure and pre-filtering mode[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 217-227. [24] HU Y F, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 263-272. [25] JAGERMAN R, OOSTERHUIS H, DE RIJKE M. To model or to intervene: a comparison of counterfactual and online learning to rank from user interactions[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 15-24. [26] LU H Y, ZHANG M, MA S P. Between clicks and satisfaction: study on multi-phase user preferences and satisfaction for online news reading[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 435-444. [27] LIN W L, ZHAO X Y, WANG Y J, et al. Autodenoise: automatic data instance denoising for recommendations[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1003-1011. [28] 黄玲, 黄镇伟, 黄梓源, 等. 图卷积宽度跨域推荐系统[J]. 计算机研究与发展, 2024, 61(7): 1713-1729. HUANG L, HUANG Z W, HUANG Z Y, et al. Graph convolutional broad cross-domain recommender system[J]. Journal of Computer Research and Development, 2024, 61(7): 1713-1729. [29] HE Z Z, WANG Y F, YANG Y H, et al. Double correction framework for denoising recommendation[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 1062-1072. [30] GAO Y J, DU Y T, HU Y J, et al. Self-guided learning to denoise for robust recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1412-1422. [31] WANG Y, XIN X, MENG Z Q, et al. Learning robust recommenders through cross-model agreement[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2015-2025. [32] JIANG L, ZHOU Z, LEUNG T, et al. MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 2304-2313. [33] LI B, SHI Y, YU Q, et al. Unsupervised cross-domain image retrieval via prototypical optimal transport[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2024: 3009-3017. [34] VELDT N. Optimal LP rounding and linear-time approximation algorithms for clustering edge-colored hypergraphs[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 34924-34951. [35] VILLANI C. Optimal transport: old and new[M]. Berlin: Springer, 2009. [36] 孙昊, 韩忠义, 王帆, 等. 基于反向伪标签最优化传输的无监督域自适应[J]. 计算机研究与发展, 2023, 60(8): 1696-1710. SUN H, HAN Z Y, WANG F, et al. Backward pseudo-label and optimal transport for unsupervised domain adaptation[J]. Journal of Computer Research and Development, 2023, 60(8): 1696-1710. [37] KOLKIN N, SALAVON J, SHAKHNAROVICH G. Style transfer by relaxed optimal transport and self-similarity[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10043-10052. [38] XU R J, LIU P L, ZHANG Y, et al. Joint partial optimal transport for open set domain adaptation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 2540-2546. [39] CHEN L Q, GAN Z, CHENG Y, et al. Graph optimal transport for cross-domain alignment[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1542-1553. [40] XU H T, LUO D X, ZHA H Y, et al. Gromov-Wasserstein learning for graph matching and node embedding[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6932-6941. [41] NI K Y, BRESSON X, CHAN T, et al. Local histogram based segmentation using the Wasserstein distance[J]. International Journal of Computer Vision, 2009, 84(1): 97-111. [42] KUSNER M, SUN Y, KOLKIN N, et al. From word embeddings to document distances[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 957-966. [43] CHEN L Q, DAI S Y, TAO C Y, et al. Adversarial text generation via feature-mover??s distance[C]//Advances in Neural Information Processing Systems 31, 2018: 4671-4682. [44] CHEN L Q, ZHANG Y Z, ZHANG R Y, et al. Improving sequence-to-sequence learning via optimal transport[EB/OL]. [2024-10-20]. https://arxiv.org/abs/1901.06283. [45] ALVAREZ-MELIS D, JAAKKOLA T S. Gromov-Wasserstein alignment of word embedding spaces[EB/OL]. [2024-10-20]. https://arxiv.org/abs/1809.00013. [46] MENG Y T, YAN X, LIU W W, et al. Wasserstein collaborative filtering for item cold-start recommendation[C]//Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. New York: ACM, 2020: 318-322. [47] LIU W M, ZHENG X L, SU J J, et al. Exploiting variational domain-invariant user embedding for partially overlapped cross domain recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 312-321. [48] XU Q Q, XIONG J C, CAO X C, et al. From social to individuals: a parsimonious path of multi-level models for crowdsourced preference aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 844-856. [49] BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. [50] PARIKH N, BOYD S. Proximal algorithms[J]. Foundations and Trends in Optimization, 2014, 1(3): 127-239. [51] JAYNES E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 620. [52] ANGELOPOULOS N, CUSSENS J. Exploiting informative priors for Bayesian classification and regression trees[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2005: 641-646. [53] DENG Z H, HUANG L, WAGN C D, et al. DeepCF: a unified framework of representation learning and matching function learning in recommender system[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 61-68. [54] WU G, VOLKOVS M, SOON C L, et al. Noise contrastive estimation for one-class collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 135-144. [55] DING J T, QUAN Y H, YAO Q M, et al. Simplify and robustify negative sampling for implicit collaborative filtering[C]//Advances in Neural Information Processing Systems 33, 2020: 1094-1105. [56] TIAN C X, XIE Y X, LI Y L, et al. Learning to denoise unre-liable interactions for graph collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 122-132. [57] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-n recommendation tasks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 39-46. [58] SEDHAIN S, BUI H, KAWALE J, et al. Practical linear models for large-scale one-class collaborative filtering[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 3854-3860. [59] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182. [60] LIANG D W, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 689-698. [61] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. [62] YANG Y H, WU L, HONG R C, et al. Enhanced graph learning for collaborative filtering via mutual information maximization[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 71-80. [63] LI C L, XIA L H, REN X B, et al. Graph transformer for recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1680-1689. [64] LIU X R, HAO Y J, ZHAO L, et al. LMACL: improving graph collaborative filtering with learnable model augmentation contrastive learning[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(7): 1-24. [65] CHEN H Y, WANG L, LIN Y S, et al. Structured graph convolutional networks with stochastic masks for recommender systems[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 614-623. [66] PAL S, MALEKMOHAMMADI S, REGOL F, et al. Non parametric graph learning for Bayesian graph neural networks[C]//Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, 2020: 1318-1327. |
| [1] | JING Li, ZHENG Gonghao, LI Xiaohan, YU Mengyuan. Recommendation Method Based on Cross-Modal Graph Masking and Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2470-2478. |
| [2] | HAN Zhuxuan, BU Fanliang, HOU Zhiwen, QI Binting, CAO Enqi. Improved KGAT Method for Predicting Spatial Behavior of Terrorist Organizations [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1918-1930. |
| [3] | SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521. |
| [4] | ZHOU Jiaxuan, LIU Xianhui, ZHAO Xiaodong, HOU Wenlong, ZHAO Weidong. Self-Supervised Knowledge-Aware Recommendation Model Integrating Adaptive Hypergraph [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1217-1229. |
| [5] | XU Fengru, LI Bohan, XU Shuai. Research Progress on Sequence Recommendation Based on Deep Learning and Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 344-366. |
| [6] | CHANG Baofa, CHE Chao, LIANG Yan. Research on Recommendation Model Based on Multi-round Dialogue of Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 385-395. |
| [7] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
| [8] | LI Xiangxia, CHEN Kairui, LI Bin. Generative Adversarial Network Recommendation System with Multi-dimensional Gradient Feedback Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1579-1589. |
| [9] | WEN Minwei, MEI Hongyan, YUAN Fengyuan, ZHANG Xiaoyu, ZHANG Xing. Survey of Multi-task Recommendation Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377. |
| [10] | WANG Yujie, YANG Zhe. Self-Supervised Social Recommendation Algorithm Fusing Residual Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3175-3188. |
| [11] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
| [12] | FENG Han, YI Huawei, LI Xiaohui, LI Rui. Review of Privacy-Preserving Research in Recommendation Systems [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832. |
| [13] | ZHANG Chengdong, WANG Shaoqing, LIU Yufang, ZHENG Shun, SUN Fuzhen. Method of Heterogeneous Graph Representation Learning Using Novel Meta-Path [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1680-1689. |
| [14] | ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. |
| [15] | CHEN Jiangmei, ZHANG Wende. Review of Point of Interest Recommendation Systems in Location-Based Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/