[1] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation, San Diego, Jun 16-17, 2016. Stroudsburg: ACL, 2016: 19-30.
[2] WANG Z Y, CHENG J P, WANG H X, et al. Short text understanding: a survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269.
王仲远, 程健鹏, 王海勋, 等. 短文本理解研究[J]. 计算机研究与发展, 2016, 53(2): 262-269.
[3] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? sen-timent classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, Philadelphia, Jul 6-7, 2002. Stroudsburg: ACL, 2002: 79-86.
[4] LIU B W, BLASCH E, CHEN Y, et al. Scalable sentiment classification for big data analysis using naive Bayes class-ifier[C]//Proceedings of the 2013 IEEE International Con-ference on Big Data, Santa Clara, Oct 6-9, 2013. Washington: IEEE Computer Society, 2013: 99-104.
[5] LE Q V, MIKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning, Beijing, Jun 21-26, 2014: 1188-1196.
[6] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Ling-uistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 3298-3307.
[7] WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Str-oudsburg: ACL, 2016: 606-615.
[8] YANG M, TU W T, WANG J X, et al. Attention based LSTM for target dependent sentiment classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 5013-5014.
[9] LIU J M, ZHANG Y. Attention modeling for targeted sen-timent[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Apr 3-7, 2017. Stroudsburg: ACL, 2017: 572-577.
[10] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Pro-ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 452-461.
[11] CAO Y, LI T R, JIA Z, et al. BGRU: new method of Chinese text sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 973-981.
曹宇, 李天瑞, 贾真, 等. BGRU:中文文本情感分析的新方法[J]. 计算机科学与探索, 2019, 13(6): 973-981.
[12] PENG H Y, MA Y K, LI Y, et al. Learning multi-grained aspect target sequence for Chinese sentiment analysis[J]. Knowledge-Based Systems, 2018, 148: 167-176.
[13] CHE W X, ZHAO Y Y, GUO H L, et al. Sentence com-pression for aspect-based sentiment analysis[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2015, 23(12): 2111-2124.
[14] LI S, ZHAO Z, HU R F, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Com-putational Linguistics, Melbourne, Jul 15-20, 2018. Strou-dsburg: ACL, 2018: 138-143.
[15] WANG X, LIU Y C, SUN C J, et al. Predicting polarities of Tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1343-1353.
[16] AUGENSTEIN I, ROCKT?SCHEL T, VLACHOS A, et al. Stance detection with bidirectional conditional encoding[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 876-885.
[17] TANG D Y, QIN B, LIU T. Aspect level sentiment class-ification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 214-224.
[18] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Pro-ceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4068-4074. |