计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (3): 627-645.DOI: 10.3778/j.issn.1673-9418.2310062
考文涛,李明,马金刚
出版日期:
2024-03-01
发布日期:
2024-03-01
KAO Wentao, LI Ming, MA Jingang
Online:
2024-03-01
Published:
2024-03-01
摘要: 结直肠癌是一种恶性肿瘤,主要发生在结肠和直肠的组织中,其早期发现和治疗具有重要意义。结直肠癌的早期检测和预防主要是对病人的肠道进行视觉检查,从而筛查结直肠息肉,但人工检查存在漏诊率高等弊端。基于卷积神经网络(CNN)的辅助诊断系统在结直肠息肉的诊断方面表现出最先进的性能,是目前计算机辅助诊断领域的研究热点。根据近几年发表的相关重要文献,对卷积神经网络在结直肠息肉辅助诊断中的应用进行系统综述。首先介绍了结直肠息肉诊断领域的常用数据集,其中包括图片和视频数据集;其次分别对CNN在结直肠息肉检测、分割以及分类中的应用进行系统阐述,对各算法的主要改进思路、优缺点以及性能进行深入分析,旨在为研究人员提供更系统的参考,并对深度学习模型的可解释性进行总结;最后对基于CNN的结直肠息肉辅助诊断的各类算法进行总结,并对未来的研究方向进行展望。
考文涛, 李明, 马金刚. 卷积神经网络在结直肠息肉辅助诊断中的应用综述[J]. 计算机科学与探索, 2024, 18(3): 627-645.
KAO Wentao, LI Ming, MA Jingang. Review of Application of Convolutional Neural Network in Auxiliary Diagnosis of Colorectal Polyps[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 627-645.
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. [2] 王彩霞. 结直肠息肉的内镜诊治进展[J]. 中国城乡企业卫生, 2023, 38(6): 21-23. WANG C X. Progress in endoscopic diagnosis and treatment of colorectal polyps[J]. Chinese Journal of Urban and Rural Enterprise, 2023, 38(6): 21-23. [3] ZHAO S, WANG S, PAN P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis[J]. Gastroenterology, 2019, 156(6): 1661-1674. [4] 张松兰. 基于卷积神经网络的图像识别综述[J]. 西安航空学院学报, 2023, 41(1): 74-81. ZHANG S L. A review of image recognition based on convolutional neural networks[J]. Journal of Xi??an Aeronautical Institute, 2023, 41(1): 74-81. [5] SANCHEZ-PERALTA L F, BOTE-CURIEL L, PICON A, et al. Deep learning to find colorectal polyps in colonoscopy: a systematic literature review[J]. Artificial Intelligence in Medicine, 2020, 108: 101923. [6] 孙福艳, 王琼, 吕宗旺, 等. 深度学习在结肠息肉分割中的应用综述[J]. 计算机工程与应用, 2023, 59(23): 15-27. SUN F Y, WANG Q, LYU Z W, et al. Review of the application of deep learning in colon polyp segmentation[J]. Computer Engineering and Applications, 2023, 59(23): 15-27. [7] AZER S A. Challenges facing the detection of colonic polyps: what can deep learning do?[J]. Medicina, 2019, 55(8): 473. [8] 王啸, 黄鉴, 吉祥, 等. 人工智能在结肠息肉检测与分类中的应用[J]. 南方医科大学学报, 2021, 41(2): 310-313. WANG X, HUANG J, JI X, et al. Application of artificial intelligence for detection and classification of colon polyps[J]. Journal of Southern Medical University, 2021, 41(2):310-313. [9] BERNAL J, SáNCHEZ F J, FERNáNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. [10] BERNAL J, SáNCHEZ J, VILARINO F. Towards automatic polyp detection with a polyp appearance model[J]. Pattern Recognition, 2012, 45(9): 3166-3182. [11] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-seg: a segmented polyp dataset[C]//Proceedings of the 26th International Conference on Multimedia Modeling, Daejeon, Jan 5-8, 2020. Cham: Springer, 2020: 451-462. [12] VáZQUEZ D, BERNAL J, SáNCHEZ F J, et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017: 4037190. [13] ANGERMANN Q, BERNAL J, SáNCHEZ-MONTES C, et al. Towards real-time polyp detection in colonoscopy videos: adapting still frame-based methodologies for video sequences analysis[C]//Proceedings of the 4th International Workshop on Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures, and 6th International Workshop on Clinical Image-Based Procedures, Held in Conjunction with International Conference on Medical Image Computing and Computer-Assisted Intervention 2017, Québec City, Sep 14, 2017. Cham: Springer, 2017: 29-41. [14] TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2015, 35(2): 630-644. [15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2014: 580-587. [16] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington:IEEE Computer Society, 2015: 1440-1448. [17] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances?in?Neural?Information?Processing?Systems?28,?Montreal, Dec?7-12,?2015: 91-99. [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 779-788. [19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. [20] ZHU R, ZHANG R, XUE D. Lesion detection of endoscopy images based on convolutional neural network features[C]//Proceedings of the 2015 8th International Congress on Image and Signal Processing. Piscataway: IEEE, 2015: 372-376. [21] SORNAPUDI S, MENG F, YI S. Region-based automated localization of colonoscopy and wireless capsule endoscopy polyps[J]. Applied Sciences, 2019, 9(12): 2404. [22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778. [23] LIU X, LI Y, YAO J, et al. Classification of polyps and adenomas using deep learning model in screening colonoscopy[C]//Proceedings of the 2019 8th International Symposium on Next Generation Electronics. Piscataway: IEEE, 2019: 1-3. [24] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 2017 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017: 4278-4284. [25] CHEN B L, WAN J J, CHEN T Y, et al. A self-attention based faster R-CNN for polyp detection from colonoscopy images[J]. Biomedical Signal Processing and Control, 2021, 70: 103019. [26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [27] WITTENBERG T, ZOBEL P, RATHKE M, et al. Computer aided detection of polyps in whitelight-colonoscopy images using deep neural networks[J]. Current Directions in Biomedical Engineering, 2019, 5(1): 231-234. [28] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 7263-7271. [29] LIU M, JIANG J, WANG Z. Colonic polyp detection in endoscopic videos with single shot detection based deep convolutional neural network[J]. IEEE Access, 2019, 7: 75058-75066. [30] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 2818-2826. [31] ZHENG Y, ZHANG R, YU R, et al. Localisation of colorectal polyps by convolutional neural network features learnt from white light and narrow band endoscopic images of multiple databases[C]//Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 4142-4145. [32] WAN J, CHEN B, YU Y. Polyp detection from colorectum images by using attentive YOLOv5[J]. Diagnostics, 2021, 11(12): 2264. [33] 司丙奇, 王志武, 姜萍萍, 等. 基于改进YOLOv5网络的内窥镜息肉检测[J]. 中国新通信, 2022, 24(11): 123-128. SI B Q, WANG Z W, JIANG P P, et al. Endoscope polyp detection based on improved YOLOv5 network[J]. China New Telecommunications, 2022, 24(11): 123-128. [34] JOCHER G, STOKEN A, CHAURASIA A, et al. Ultralytics/YOLOv5: v6.0-YOLOv5n Nano models, roboflow integration, TensorFlow export, OpenCV DNN support[Z]. Zenodo, 2021. [35] MA Y, LI Y, YAO J, et al. Polyp location in colonoscopy based on deep learning[C]//Proceedings of the 2019 8th International Symposium on Next Generation Electronics. Piscataway: IEEE, 2019: 1-3. [36] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456. [37] 薛钦原, 胡珊珊, 胡新军, 等. 改进YOLOv7的结直肠息肉检测算法[J/OL]. 计算机工程与应用(2023-11-28)[2023-12-02]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231127. 1356.012.html. XUE Q Y, HU S S, HU X J, et al. Improved YOLOv7 algorithm for colorectal polyp detection[J/OL].Computer Engineering and Applications(2023-11-28)[2023-12-02]. http://kns.cnki.net/kcms/detail/11.2127.TP.20231127.1356.012.html. [38] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. [39] MO X, TAO K, WANG Q, et al. An efficient approach for polyps detection in endoscopic videos based on faster R-CNN[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 3929-3934. [40] MA C, JIANG H, MA L, et al. A real-time polyp detection framework for colonoscopy video[C]//Proceedings of the 2022 Chinese Conference on Pattern Recognition and Computer Vision. Cham: Springer, 2022: 267-278. [41] NADIMI E S, BUIJS M M, HERP J, et al. Application of deep learning for autonomous detection and localization of colorectal polyps in wireless colon capsule endoscopy[J]. Computers & Electrical Engineering, 2020, 81: 106531. [42] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 818-833. [43] ALBUQUERQUE C, HENRIQUES R, CASTELLI M. A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps[J]. Scientific Reports, 2022, 12(1): 17678. [44] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 3431-3440. [45] YU J, PAN H, YIN Q, et al. Fully convolutional densenets for polyp segmentation in colonoscopy[C]//Proceedings of the 2019 IEEE 35th International Conference on Data Engineering Workshops. Piscataway: IEEE, 2019: 306-311. [46] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 4700-4708. [47] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [48] SUN X, ZHANG P, WANG D, et al. Colorectal polyp segmentation by U-Net with dilation convolution[C]//Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2019: 851-858. [49] MOHAPATRA S, PATI G K, MISHRA M, et al. UPolySeg: a U-Net-based polyp segmentation network using colonoscopy images[J]. Gastroenterology Insights, 2022, 13(3): 264-274. [50] DUMITRU R G, PETELEAZA D, CRACIUN C. Using DUCK-Net for polyp image segmentation[J]. Scientific Reports, 2023, 13(1): 9803. [51] 徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法[J]. 光学精密工程, 2022, 30(8): 970-983. XU C J, YI J B, CAO F, et al. Colorectal polyp segmentation algorithm using DoubleUNet network[J]. Optics and Precision Engineering, 2022, 30(8): 970-983. [52] 贾立新, 胡奕标, 金燕, 等. 融合多种注意力机制的结直肠息肉分割神经网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 463-473. JIA L X, HU Y B, JIN Y, et al. Polyp segmentation network com-bined with multi-attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 463-473. [53] JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2020: 558-564. [54] JADON S. A survey of loss functions for semantic segmentation[C]//Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2020: 1-7. [55] TRAN S T, NGUYEN M H, DANG H P, et al. Automatic polyp segmentation using modified recurrent residual Unet network[J]. IEEE Access, 2022, 10: 65951-65961. [56] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [57] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 801-818. [58] EU C Y, TANG T B, LU C K. Automatic polyp segmentation in colonoscopy images using single network model: SegNet[C]//Proceedings of the 2020 International Conference on Artificial Intelligence for Smart Community, Ho Chi Minh City, Oct 14-15, 2020. Singapore: Springer, 2022: 717-723. [59] 朱世祺, 徐昶, 周鑫, 等. 基于DeepLab V3+深度神经网络的结直肠息肉内镜图像分割[J]. 中国医学物理学杂志, 2023, 40(8): 944-949. ZHU S Q, XU C, ZHOU X, et al. Colorectal polyp segmentation in endoscopic images using DeepLab V3+[J]. Chinese Journal of Medical Physics, 2023, 40(8): 944-949. [60] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 1251-1258. [61] 王亚刚, 郗怡媛, 潘晓英. 改进DeepLabv3+网络的肠道息肉分割方法[J]. 计算机科学与探索, 2020, 14(7): 1243-1250. WANG Y G, XI Y Y, PAN X Y. Method for intestinal polyp segmentation by improving DeepLabv3+ network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1243-1250. [62] HU K, CHEN W, SUN Y Z, et al. PPNet: pyramid pooling based network for polyp segmentation[J]. Computers in Biology and Medicine, 2023, 160: 107028. [63] OKAMOTO T, ODAGAWA M, KOIDE T, et al. Feature extraction of colorectal endoscopic images for computer-aided diagnosis with CNN[C]//Proceedings of the 2019 2nd International Symposium on Devices, Circuits and Systems. Piscataway: IEEE, 2019: 1-4. [64] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [65] JIN E H, LEE D, BAE J H, et al. Improved accuracy in optical diagnosis of colorectal polyps using convolutional neural networks with visual explanations[J]. Gastroenterology, 2020, 158(8): 2169-2179. [66] ZACHARIAH R, SAMARASENA J, LUBA D, et al. Prediction of polyp pathology using convolutional neural networks achieves“resect and discard”thresholds[J]. The American Journal of Gastroenterology, 2020, 115(1): 138. [67] PATINO-BARRIENTOS S, SIERRA-SOSA D, GARCIA-ZAPIRAIN B, et al. Kudo??s classification for colon polyps assessment using a deep learning approach[J]. Applied Sciences, 2020, 10(2): 501. [68] KUDO S E, TAMURA S, NAKAJIMA T, et al. Diagnosis of colorectal tumorous lesions by magnifying endoscopy[J]. Gastrointestinal Endoscopy, 1996, 44(1): 8-14. [69] LIU S, LIU X, CHANG S, et al. Multi-classification of polyps in colonoscopy images based on an improved deep convolutional neural network[J]. Computers, Materials & Continua, 2023, 75(3): 5837-5852. [70] SHARMA P, DAS D, GAUTAM A, et al. LPNet: a lightweight CNN with discrete wavelet pooling strategies for colon polyps classification[J]. International Journal of Imaging Systems and Technology, 2023, 33(2): 495-510. [71] YOUNAS F, USMAN M, YAN W Q. A deep ensemble learning method for colorectal polyp classification with optimized network parameters[J]. Applied Intelligence, 2023, 53(2): 2410-2433. [72] RAHMAN M M, WADUD M A H, HASAN M M. Computerized classification of gastrointestinal polyps using stacking ensemble of convolutional neural network[J]. Informatics in Medicine Unlocked, 2021, 24: 100603. [73] OZAWA T, ISHIHARA S, FUJISHIRO M, et al. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks[J]. Therapeutic Advances in Gastroenterology, 2020, 13: 1756284820910659. [74] TANWAR S, VIJAYALAKSHMI S, SABHARWAL M, et al. Detection and classification of colorectal polyp using deep learning[J/OL]. BioMed Research International [2023-08-06]. https://doi.org/10.1155/2022/2805607. [75] 杨昆, 原嘉成, 高聪, 等. 基于改进的Faster R-CNN的息肉目标检测和分类方法[J]. 河北大学学报(自然科学版), 2023, 43(1): 103-112. YANG K, YUAN J C, GAO C, et al. Object detection and classification of polyps based on improved Faster R-CNN[J]. Journal of Hebei University (Natural Science Edition), 2023, 43(1): 103-112. [76] ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split-attention networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2736-2746. [77] WICKSTR?M K, KAMPFFMEYER M, JENSSEN R. Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps[J]. Medical Image Analysis, 2020, 60: 101619. [78] SONG E M, PARK B, HA C A, et al. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model[J]. Scientific reports, 2020, 10(1): 30. [79] KRENZER A, HEIL S, FITTING D, et al. Automated classification of polyps using deep learning architectures and few-shot learning[J]. BMC Medical Imaging, 2023, 23(1): 59. [80] WANG S, YIN Y, WANG D, et al. An interpretable deep neural network for colorectal polyp diagnosis under colonoscopy[J]. Knowledge-Based Systems, 2021, 234: 107568. [81]WANG D, WANG X, WANG S, et al. Explainable multitask Shapley explanation networks for real-time polyp diagnosis in videos[J]. IEEE Transactions on Industrial Informatics, 2023,19(6): 7780-7789. [82] B?HLE M, EITEL F, WEYGANDT M, et al. Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer??s disease classification[J]. Frontiers in Aging Neuroscience, 2019, 11: 194. [83] WOLLEK A, GRAF R, ?E?ATKA S, et al. Attention-based saliency maps improve interpretability of pneumothorax classification[J]. Radiology: Artificial Intelligence, 2022, 5(2): e220187. |
[1] | 陈加兴, 胡志伟, 李茹, 韩孝奇, 卢江, 闫智超. 融合描述信息和结构特征的知识图谱链接预测[J]. 计算机科学与探索, 2024, 18(2): 486-495. |
[2] | 王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319. |
[3] | 王兵, 黄刚, 张兴鹏. 融合卷积特征的清晰边缘检测研究[J]. 计算机科学与探索, 2023, 17(9): 2148-2160. |
[4] | 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. |
[5] | 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111. |
[6] | 孟伟, 袁艺琳. 迁移学习应用于新型冠状病毒肺炎诊断综述[J]. 计算机科学与探索, 2023, 17(3): 561-576. |
[7] | 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395. |
[8] | 李杰, 瞿中. 深度学习在手指静脉识别中的应用研究综述[J]. 计算机科学与探索, 2023, 17(11): 2557-2579. |
[9] | 安凤平, 李晓薇, 曹翔. 权重初始化-滑动窗口CNN的医学图像分类[J]. 计算机科学与探索, 2022, 16(8): 1885-1897. |
[10] | 程卫月, 张雪琴, 林克正, 李骜. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154. |
[11] | 童敢, 黄立波. Winograd快速卷积相关研究综述[J]. 计算机科学与探索, 2022, 16(5): 959-971. |
[12] | 裴利沈, 赵雪专. 群体行为识别深度学习方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 775-790. |
[13] | 陆仲达, 张春达, 张佳奇, 王子菲, 许军华. 双分支网络的苹果叶部病害识别[J]. 计算机科学与探索, 2022, 16(4): 917-926. |
[14] | 李志欣, 陈圣嘉, 周韬, 马慧芳. 协同级联网络和对抗网络的目标检测[J]. 计算机科学与探索, 2022, 16(1): 217-230. |
[15] | 任龙杰, 孙颖, 丁卫平, 鞠恒荣, 曹金鑫. 基于单种群蛙跳优化CNN的眼底图像多病变检测[J]. 计算机科学与探索, 2021, 15(9): 1762-1772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||