[1] SUN Z, GUO Q, YANG J, et al. Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37: 100879.
[2] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[3] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Pro-ceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 2181-2187.
[4] WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5329-5336.
[5] JIN J R, QIN J R, FANG Y C, et al. An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 75-84.
[6] XIAN Y K, FU Z H, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294.
[7] LU L Y, WANG B, ZHANG Z Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]//Procee-dings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 526-534.
[8] WANG H, XU Y, YANG C, et al. Knowledge-adaptive contras-tive learning for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 535-543.
[9] FERRARA A, ANELLI V W, MANCINO A C M, et al. KGFlex: efficient recommendation with sparse feature factorization and knowledge graphs[J]. ACM Transactions on Recommender Systems, 2023, 1(4): 1-30.
[10] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, 2013: 2787-2795.
[11] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696.
[12] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1205.2618.
[13] WANG H W, ZHANG F Z, XIE X, et al. DKN[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844.
[14] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous know-ledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137.
[15] YU X, REN X, GU Q Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//Proceedings of the IJCAI-13 HINA Workshop, 2013.
[16] LUO C, PANG W, WANG Z, et al. Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 917-922.
[17] LI D Z, QU H B, WANG J Q. A survey on knowledge graph-based recommender systems[C]//Proceedings of the 2023 China Automation Congress. Piscataway: IEEE, 2023: 2925-2930.
[18] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958.
[19] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313.
[20] WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887.
[21] 李鹏飞, 贺洋, 毋建宏. 融合全局特征的时空网络兴趣点推荐算法[J]. 计算机工程与应用, 2024, 60(11): 75-83.
LI P F, HE Y, WU J H. Spatio-temporal network interest point recommendation algorithm fusing global features[J]. Computer Engineering and Applications, 2024, 60(11): 75-83.
[22] 张俊三, 肖森, 高慧, 等. 基于邻域采样的多任务图推荐算法[J]. 计算机工程与应用, 2024, 60(9): 172-180.
ZHANG J S, XIAO S, GAO H, et al. Multi-task graph recom-mendation algorithm based on neighborhood sampling[J]. Computer Engineering and Applications, 2024, 60(9): 172-180.
[23] WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1101-1110.
[24] JI S Y, FENG Y F, JI R R, et al. Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2020-2029.
[25] YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 413-424.
[26] LI Y F, GAO C, LUO H L, et al. Enhancing hypergraph neural networks with intent disentanglement for session-based recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1997-2002.
[27] LAI Y T, SU Y J, WEI L W, et al. Multi-view spatial-temporal enhanced hypergraph network for next POI recommendation[C]//Proceedings of the 2023 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 237-252.
[28] XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79.
[29] SHAO Z F, WANG S J, LU W P, et al. Filter-enhanced hyper-graph transformer for multi-behavior sequential recommendation[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 6575-6579.
[30] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735.
[31] ZOU D, WEI W, WANG Z Y, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2817-2826.
[32] YU J L, XIA X, CHEN T, et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 913-926.
[33] HE X N, DENG K, WANG X, et al. LightGCN[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[34] CHEN X, XIONG K, ZHANG Y F, et al. Neural feature-aware recommendation with signed hypergraph convolutional network[J]. ACM Transactions on Information Systems, 2020, 39(1): 1-22.
[35] ZHU Y Q, XU Y C, YU F, et al. Deep graph contrastive representation learning[EB/OL]. [2024-03-16]. https://arxiv.org/ abs/2006.04131.
[36] RENDLE S, KRICHENE W, ZHANG L, et al. Neural collaborative filtering vs. matrix factorization revisited[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 240-248.
[37] CHEN W, HUANG P P, XU J M, et al. POG: personalized outfit generation for fashion recommendation at Alibaba iFashion[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2662-2670.
[38] KRICHENE W, RENDLE S, KRICHENE W, et al. On sampled metrics for item recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1748-1757.
[39] WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977.
[40] WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228.
[41] DU Y T, ZHU X J, CHEN L, et al. HAKG[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1390-1400.
[42] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249-256.
[43] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2024-03-16]. https://arxiv.org/abs/1412.6980. |