[1] LIU Z, FAN Z, WANG Y, et al. Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1608-1612.
[2] YIN J, LIU C, WANG W, et al. Learning transferrable parameters for long-tailed sequential user behavior modeling[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 359-367.
[3] YIN H Z, CUI B, LI J, et al. Challenging the long tail recommendation[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 896-907.
[4] LIU S Y, ZHENG Y J, LIU S, et al. Long-tail session-based recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 509-514.
[5] YUN S, KIM K, YOON K, et al. LTE4G: long-tail experts for graph neural networks[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2434-2443.
[6] 石美惠, 申德荣, 寇月, 等. 融合全局和局部特征的下一个兴趣点推荐方法[J]. 软件学报, 2023, 34(2): 786-801.
SHI M H, SHEN D R, KOU Y, et al. Next point-of-interest recommendation approach with global and local feature fusion[J]. Journal of Software, 2023, 34(2): 786-801.
[7] JANG S, LEE H, CHO H, et al. CITIES: contextual inference of tail-item embeddings for sequential recommendation[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 202-211.
[8] SONG W Z, WANG S J, WANG Y, et al. Next-item recommendations in short sessions[C]//Proceedings of the 15th ACM Conference on Recommender Systems. New York: ACM, 2021: 282-291.
[9] KIM Y, KIM K, PARK C, et al. Sequential and diverse recommendation with long tail[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 2740-2746.
[10] JIANG J Y, ZHANG P Y, LUO Y T, et al. Sequential recommendation with bidirectional chronological augmentation of transformer[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2112.06460.
[11] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1511.06939.
[12] HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 241-248.
[13] HIDASI B, KARATZOGLOU A, HIDASI B, et al. Recurrent neural networks with top-k gains for session-based recommendations[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 843-852.
[14] TANG J X, WANG K, TANG J, et al. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.
[15] YUAN F, KARATZOGLOU A, ARAPAKIS I, et al. A simple convolutional generative network for next item recommendation[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 582-590.
[16] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
[17] 陈聪, 张伟, 王骏. 带有时间预测辅助任务的会话式序列推荐[J]. 计算机学报, 2021, 44(9): 1841-1853.
CHEN C, ZHANG W, WANG J. Session-based sequential recommendation with auxiliary time prediction[J]. Chinese Journal of Computers, 2021, 44(9): 1841-1853.
[18] 任豪, 刘柏嵩, 孙金杨, 等. 基于时间和关系感知的图协同过滤跨域序列推荐[J]. 计算机研究与发展, 2023, 60(1): 112-124.
REN H, LIU B S, SUN J Y, et al. A time and relation-aware graph collaborative filtering for cross-domain sequential recommendation[J]. Journal of Computer Research and Development, 2023, 60(1): 112-124.
[19] YU D J, YU T, WANG D J, et al. Long tail service recommendation based on cross-view and contrastive learning[J]. Expert Systems with Applications, 2024, 238: 121957.
[20] DU J F, ZHOU S L, YU J, et al. Cross-task multimodal reinforcement for long tail next POI recommendation[J]. IEEE Transactions on Multimedia, 2023, 26: 1996-2005.
[21] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
[22] ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2388-2399.
[23] KIM K, HYUN D, YUN S, et al. MELT: mutual enhancement of long-tailed user and item for sequential recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 68-77.
[24] BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 41-48.
[25] LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1608.03983.
[26] MCAULEY J, TARGETT C, SHI Q, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52. |