[1] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105.
[3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-02-17]. https://arxiv.org/abs/1409.1556.
[4] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
[5] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[6] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[7] DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11963-11975.
[8] DAI Z H, LIU H X, LE Q V, et al. CoAtNet: marrying convolution and attention for all data sizes[EB/OL]. [2024-02-17]. https://arxiv.org/abs/2106.04803.
[9] 付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156.
FU G D, HUANG J, YANG T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-02-17]. https://arxiv.org/abs/2010.11929.
[12] 张峰, 黄仕鑫, 花强, 等. 基于Depth-wise卷积和视觉Transformer的图像分类模型[J]. 计算机科学, 2024, 51(2): 196-204.
ZHANG F, HUANG S X, HUA Q, et al. Novel image classification model based on depth-wise convolution neural network and visual transformer[J]. Computer Science, 2024, 51(2): 196-204.
[13] LUO X, WEI L H, WEN L J, et al. Rectifying the shortcut learning of background for few-shot learning[EB/OL]. [2024-03-13]. https://arxiv.org/abs/2107.07746.
[14] 李伟, 黄鹤鸣. 基于双交叉熵的自适应残差卷积图像分类算法[J]. 计算机工程与设计, 2023, 44(12): 3670-3676.
LI W, HUANG H M. Adaptive residual convolution image classification algorithm with dual cross-entropy[J]. Computer Engineering and Design, 2023, 44(12): 3670-3676.
[15] 叶继华, 黎欣, 陈进, 等. MAFDNet: 复杂环境下图像自适应分类新方法[J]. 数据采集与处理, 2023, 38(6): 1392-1405.
YE J H, LI X, CHEN J, et al. MAFDNet: a new method of image adaptive classification in complex environment[J]. Journal of Data Acquisition and Processing, 2023, 38(6): 1392-1405.
[16] ZAGORUYKO S, KOMODAKIS N. Wide residual networks [C]//Proceedings of the 2016 British Machine Vision Conference. Durham: BMVA Press, 2016.
[17] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations, 2016.
[18] MISRA D. Mish: a self regularized non-monotonic activation function[EB/OL]. [2024-03-13]. https://arxiv.org/abs/1908.08681.
[19] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. Madison: Omni Press, 2013: 1-9.
[20] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Madison: Omni Press, 2010: 807-814.
[21] LUU M L, HUANG Z Y, XING E P, et al. Expeditious saliency-guided mix-up through random gradient thresholding[EB/OL]. [2024-03-13]. https://arxiv.org/abs/2212.04875.
[22] QIU X R, ZHU R J, CHOU Y H, et al. Gated attention coding for training high-performance and efficient spiking neural networks[EB/OL]. [2024-03-13]. https://arxiv.org/abs/2308. 06582.
[23] N?KLAND A, EIDNES L H. Training neural networks with local error signals[C]//Proceedings of the 2019 International Conference on Machine Learning, 2019: 4839-4850.
[24] HASSANI A, WALTON S, SHAH N, et al. Escaping the big data paradigm with compact transformers[EB/OL]. [2024-03-13]. https://arxiv.org/abs/2104.05704.
[25] HUANG Z Z, LIANG S W, LIANG M F, et al. DIANet: dense-and-implicit attention network[EB/OL]. [2024-03-13]. https://arxiv.org/abs/1905.10671.
[26] HASANPOUR S H, ROUHANI M, FAYYAZ M, et al. Towards principled design of deep convolutional networks: introducing SimpNet[EB/OL]. [2024-03-13]. https://arxiv.org/abs/1802.06205.
[27] TSENG C H, LEE S J, FENG J N, et al. UPANets: learning from the universal pixel attention neworks[J]. Entropy, 2022, 24(9): 1243.
[28] 郭玉荣, 张珂, 王新胜, 等. 端到端双通道特征重标定DenseNet图像分类[J]. 中国图象图形学报, 2020, 25(3): 486-497.
GUO Y R, ZHANG K, WANG X S, et al. Image classification method based on end-to-end dual feature reweight DenseNet [J]. Journal of Image and Graphics, 2020, 25(3): 486-497.
[29] NAKATA K, NG Y, MIYASHITA D, et al. Revisiting a kNN-based image classification system with high-capacity storage[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 457-474.
[30] LAN H, WANG X H, SHEN H, et al. Couplformer: rethinking vision transformer with coupling attention[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6464-6473.
[31] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends? in Machine Learning, 2009, 2(1): 1-127. |