[1] 边坤, 梁慧. 基于机器学习的图案分类研究进展[J]. 图学学报, 2023, 44(3): 415-426.
BIAN K, LIANG H. Research progress of pattern classification based on machine learning[J]. Journal of Graphics, 2023, 44(3): 415-426.
[2] 郭迎春, 冯放, 阎刚, 等. 基于自适应融合网络的跨域行人重识别方法[J]. 自动化学报, 2022, 48(11): 2744-2756.
GUO Y C, FENG F, YAN G, et al. Cross-domain person re-identification on adaptive fusion network[J]. Acta Automatica Sinica, 2022, 48(11): 2744-2756.
[3] 陈建炜, 杨帆, 赖永炫. 一种基于信息熵迁移的文本检测模型自蒸馏方法[J]. 自动化学报, 2024, 50(11): 2128-2139.
CHEN J W, YANG F, LAI Y X. Self-distillation via entropy transfer for scene text detection[J]. Acta Automatica Sinica, 2024, 50(11): 2128-2139.
[4] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42.
ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42.
[5] 黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展[J]. 中国图象图形学报, 2022, 27(3): 672-686.
LI Y, SONG P H. Review of transfer learning in medical image classification[J]. Journal of Image and Graphics, 2022, 27(3): 672-686.
[6] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548.
FAN C N, LIU P, XIAO T, et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515-548.
[7] ZHANG J S, LI X, TIAN J L, et al. A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition[J]. Reliability Engineering & System Safety, 2023, 231: 108986.
[8] LIU S W, JIANG H K, WU Z H, et al. Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching[J]. Reliability Engineering & System Safety, 2023, 231: 109036.
[9] 赵小强, 蒋红梅. 基于特征和类别对齐的领域适应算法[J]. 控制与决策, 2022, 37(5): 1203-1210.
ZHAO X Q, JIANG H M. Domain adaptation based on feature-level and class-level alignment[J]. Control and Decision, 2022, 37(5): 1203-1210.
[10] NING Y J, PENG J T, LIU Q Y, et al. Contrastive learning based on category matching for domain adaptation in hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5301814.
[11] DENG Z Y, ZHOU K Y, LI D, et al. Dynamic instance domain adaptation[J]. IEEE Transactions on Image Processing, 2022, 31: 4585-4597.
[12] LU H M, WU J Z, RUAN Y J, et al. A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction[J]. International Journal of Electrical Power & Energy Systems, 2023, 149: 109024.
[13] WANG R, SONG C Y, GAO M X, et al. Model-data fusion domain adaptation for battery state of health estimation with fewer data and simplified feature extractor[J]. Journal of Energy Storage, 2023, 60: 106686.
[14] XU Y B, ZHANG Y M, YUE T X, et al. Graph-based domain adaptation few-shot learning for hyperspectral image classification[J]. Remote Sensing, 2023, 15(4): 1125.
[15] JIN C. Cross-database facial expression recognition based on hybrid improved unsupervised domain adaptation[J]. Multimedia Tools and Applications, 2023, 82(1): 1105-1129.
[16] PRONZATO L. Performance analysis of greedy algorithms for minimising a maximum mean discrepancy[J]. Statistics and Computing, 2022, 33(1): 14.
[17] DEV K, ASHRAF Z, MUHURI P K, et al. Deep autoencoder based domain adaptation for transfer learning[J]. Multimedia Tools and Applications, 2022, 81(16): 22379-22405.
[18] SHE Q S, CHEN T, FANG F, et al. Improved domain adaptation network based on Wasserstein distance for motor imagery EEG classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1137-1148.
[19] ZANG S F, CHENG Y H, WANG X S, et al. Cross domain mean approximation for unsupervised domain adaptation[J]. IEEE Access, 2020, 8: 139052-139069.
[20] ZANG S F, ZHANG P F, GUO L L, et al. Transfer extreme learning machine with cross domain mean approximation projection[C]//Proceedings of the 2022 12th International Conference on Information Technology in Medicine and Education. Piscataway: IEEE, 2022: 490-496.
[21] WANG J D, CHEN Y Q, FENG W J, et al. Transfer learning with dynamic distribution adaptation[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(1): 1-25.
[22] WANG J D, FENG W J, CHEN Y Q, et al. Visual domain adaptation with manifold embedded distribution alignment[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 402-410.
[23] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2066-2073.
[24] WANG J D, CHEN Y Q, HAO S J, et al. Balanced distribution adaptation for transfer learning[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017: 1129-1134.
[25] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
[26] ZHU Y, WU X D, QIANG J P, et al. Representation learning via an integrated autoencoder for unsupervised domain adaptation[J]. Frontiers of Computer Science, 2023, 17(5): 175334.
[27] HUANG L Q, LIU Z G, DEZERT J. Cross-domain pattern classification with distribution adaptation based on evidence theory[J]. IEEE Transactions on Cybernetics, 2023, 53(2): 718-731.
[28] LEKSHMI R, SANODIYA R K, JOSE B R, et al. Kernelized global-local discriminant information preservation for unsupervised domain adaptation[J]. Applied Intelligence, 2023, 53(21): 25412-25434. |