
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2803-2814.DOI: 10.3778/j.issn.1673-9418.2409034
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
ZHANG Xiaoyan, JIANG Shiqi, MENG Xiangfu
Online:2025-10-01
Published:2025-09-30
张霄雁,江诗琪,孟祥福
ZHANG Xiaoyan, JIANG Shiqi, MENG Xiangfu. Multimodal Recipe Representation Learning Method Based on Heterogeneous Information Networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2803-2814.
张霄雁, 江诗琪, 孟祥福. 基于异构信息网络的多模态食谱表示学习方法[J]. 计算机科学与探索, 2025, 19(10): 2803-2814.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2409034
| [1] JIANG S Q. Food computing for nutrition and health[C]//Proceedings of the 2024 IEEE 40th International Conference on Data Engineering. Piscataway: IEEE, 2024: 29-31. [2] XIONG S F, TIAN W J, SI H P, et al. A survey of the applications of text mining for the food domain[J]. Algorithms, 2024, 17(5): 176. [3] JIANG S Q, MIN W Q. Food computing for multimedia[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 4782-4784. [4] ZHAO W Y, ZHOU D, CAO B Q, et al. Efficient low-rank multi-component fusion with component-specific factors in image-recipe retrieval[J]. Multimedia Tools and Applications, 2024, 83(2): 3601-3619. [5] WAHED M, ZHOU X N, YU T J, et al. Fine-grained alignment for cross-modal recipe retrieval[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 5572-5581. [6] ZOU Z Y, ZHU X H, ZHU Q Y, et al. CREAMY: cross-modal recipe retrieval by avoiding matching imperfectly[J]. IEEE Access, 2024, 12: 33283-33295. [7] GOEL M, CHAKRABORTY P, PONNAGANTI V, et al. Ratatouille: a tool for novel recipe generation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 107-110. [8] CHHIKARA P, CHAURASIA D, JIANG Y F, et al. Fire: food image to recipe generation[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 8184-8194. [9] 宋亚光, 杨小汕, 徐常胜. 跨模态多视角自监督的个性化食谱推荐异构图网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 413-422. SONG Y G, YANG X S, XU C S. A cross-modal multi-view self-supervised heterogeneous graph network for personalized food recommendation[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 413-422. [10] STARKE A D, MUSTO C, RAPP A, et al. “Tell me why”: using natural language justifications in a recipe recommender system to support healthier food choices[J]. User Modeling and User-Adapted Interaction, 2024, 34(2): 407-440. [11] LI D Y, ZAKI M J. RECIPTOR: an effective pretrained model for recipe representation learning[C]//Proceedings of the 26th ACM SIGKDD International Conference on Know- ledge Discovery and Data Mining. New York: ACM, 2020: 1719-1727. [12] TIAN Y J, ZHANG C X, METOYER R, et al. Recipe representation learning with networks[C]//Proceedings of the 30th ACM International Conference on Information & Know- ledge Management. New York: ACM, 2021: 1824-1833. [13] CHEN L Z, LI W, CUI X H, et al. MS-GDA: improving heterogeneous recipe representation via multinomial sampling graph data augmentation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(7): 1-23. [14] MARíN J, BISWAS A, OFLI F, et al. Recipe1M: a dataset for learning cross-modal embeddings for cooking recipes and food images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1): 187-203. [15] SUGIYAMA Y, YANAI K. Cross-modal recipe embeddings by disentangling recipe contents and dish styles[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2501-2509. [16] MA J L, QIU Y L, YANG C Q, et al. BioNet: a comprehensive interaction model of finding therapeutics for diseases with graph deep learning[C]//Proceedings of the 2023 IEEE International Conference on High Performance Computing & Communications. Piscataway: IEEE, 2023: 369-376. [17] 朱金侠, 孟祥福, 邢长征, 等. 融合社交关系的轻量级图卷积协同过滤推荐方法[J]. 智能系统学报, 2022, 17(4): 788-797. ZHU J X, MENG X F, XING C Z, et al. Light graph convolutional collaborative filtering recommendation approach incorporating social relationships[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 788-797. [18] ZENG X H, PENG H, LI A S. Adversarial socialbots modeling based on structural information principles[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(1): 392-400. [19] TIAN Y J, ZHANG C X, GUO Z C, et al. Recipe2Vec: multi-modal recipe representation learning with graph neural networks[C]//Proceedings of the 2022 International Joint Conference on Artificial Intelligence. Palo Alto: AAAI,2022: 3473-3479. [20] 王慧妍, 于明鹤, 于戈. 基于深度学习的异质信息网络表示学习方法综述[J]. 计算机科学, 2023, 50(5): 103-114. WANG H Y, YU M H, YU G. Deep learning-based heterogeneous information network representation: a survey[J]. Computer Science, 2023, 50(5): 103-114. [21] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Semantic Web Conference. Cham: Springer, 2018: 593-607. [22] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032. [23] NOZAWA K, SATO I. Evaluation methods for representation learning: a survey[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2022: 5556-5563. [24] THEKUMPARAMPIL K K, WANG C, OH S, et al. Attention- based graph neural network for semi-supervised learning[EB/OL]. [2024-07-08]. https://arxiv.org/abs/1803.03735. [25] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 7th International Conference on Learning Representations, 2019. [26] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114. [27] GUO C, LEE M, LECLERC G, et al. Adversarially trained neural representations are already as robust as biological neural representations[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 8072-8081. [28] BOSSARD L, GUILLAUMIN M, VAN GOOL L. Food-101-mining discriminative components with random forests[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 446-461. [29] CHEN J J, NGO C W. Deep-based ingredient recognition for cooking recipe retrieval[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 32-41. [30] TENG C Y, LIN Y R, ADAMIC L A. Recipe recommendation using ingredient networks[C]//Proceedings of the 4th Annual ACM Web Science Conference. New York: ACM, 2012: 298-307. [31] PARK D, KIM K, KIM S, et al. FlavorGraph: a large-scale food-chemical graph for generating food representations and recommending food pairings[J]. Scientific Reports, 2021, 11: 931. [32] HAUSSMANN S, SENEVIRATNE O, CHEN Y, et al. FoodKG: a semantics-driven knowledge graph for food recommendation[C]//Proceedings of the 18th International Semantic Web Conference. Cham: Springer, 2019: 146-162. [33] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. [34] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018. [35] HU Z N, DONG Y X, WANG K S, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710. [36] WANG H, LIN G S, HOI S C H, et al. Learning structural representations for recipe generation and food retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3363-3377. [37] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
| [1] | JING Li, ZHENG Gonghao, LI Xiaohan, YU Mengyuan. Recommendation Method Based on Cross-Modal Graph Masking and Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2470-2478. |
| [2] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [3] | MENG Xiangfu, SUN Shuonan, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Trajectory Representation Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1437-1454. |
| [4] | CAO Lu, DING Cangfeng, MA Lerong, YAN Zhaoyao, YOU Hao, HONG Anqi. Advances in Node Importance Ranking Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 877-900. |
| [5] | YUAN Lining, FENG Wengang, LIU Zhao. Node Classification Based on Kolmogorov-Arnold Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 645-656. |
| [6] | ZHANG Lanze, GU Yijun, PENG Jingjie. Spatial-Frequency Domain Adaptive Graph Neural Network for Heterophilic Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 169-186. |
| [7] | YU Zhenhua, SU Yufan, YE Ou, CONG Xuya. Adversarial Example Generation Method for Automatic Speech Recognition Systems [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 253-263. |
| [8] | TU Jiaqi, ZHANG Hua, CHANG Xiaojie, WANG Ji, YUAN Shuhong. Heterogeneous Information Network Embedding Learning Based on Attention: a Survey [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 1-29. |
| [9] | WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959. |
| [10] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
| [11] | SHENG Lei, CHEN Xiliang, LAI Jun. Offline Multi-agent Reinforcement Learning Method Based on Latent State Distribution GPT [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2169-2179. |
| [12] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
| [13] | LI Manwen, ZHANG Yueqin, ZHANG Chenwei, ZHANG Zehua. Geographically Insensitive Spatial-Temporal POI Recommendation Based on Heterogeneous Graph Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 755-767. |
| [14] | XU Yuhui, PAN Zhisong, XU Kun. Review of Research on Adversarial Attack in Three Kinds of Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3080-3099. |
| [15] | QIAN Fulan, WANG Wenxue, ZHENG Wenjie, CHEN Jie, ZHAO Shu. Reserved Hierarchy-Based Knowledge Graph Embedding for Link Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2174-2183. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/