Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2415-2429.DOI: 10.3778/j.issn.1673-9418.2205003
• Surveys and Frontiers • Previous Articles Next Articles
YAN Siyi1, XUE Wanli1,+(), YUAN Tiantian2
Received:
2022-05-05
Revised:
2022-07-20
Online:
2022-11-01
Published:
2022-11-16
About author:
YAN Siyi, born in 1996, M.S. candidate. Her research interests include sign language recognition and sign language translation.Supported by:
通讯作者:
+ E-mail: xuewanli@email.tjut.edu.cn作者简介:
闫思伊(1996—),女,河南驻马店人,硕士研究生,主要研究方向为手语识别、手语翻译。基金资助:
CLC Number:
YAN Siyi, XUE Wanli, YUAN Tiantian. Survey of Sign Language Recognition and Translation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2415-2429.
闫思伊, 薛万利, 袁甜甜. 手语识别与翻译综述[J]. 计算机科学与探索, 2022, 16(11): 2415-2429.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205003
数据集 | 语言 | 类型 | 属性 | ||
---|---|---|---|---|---|
包含手语词个数 | 视频数 | 手语演示者个数 | |||
Boston ASLLVD[ | 美国手语 | 孤立词 | 2 742 | 9 794 | 6 |
AUSLAN[ | 澳大利亚手语 | 孤立词 | — | 1 100 | 100 |
BSL Corpus[ | 英国手语 | 孤立词 | 5 000 | — | 249 |
PSL Kinect30[ | 波兰手语 | 孤立词 | 30 | 300 | 1 |
DEVISIGN-G/D/L[ | 中国手语 | 孤立词 | 36/500/2 000 | 24 000 | 8 |
LSE-sign[ | 西班牙手语 | 孤立词 | 2 400 | 2 400 | 2 |
LSA64[ | 阿根廷手语 | 孤立词 | 64 | 3 200 | 10 |
USTC-ICSL[ | 中国手语 | 孤立词 | 500 | 125 000 | 50 |
DISFA[ | 英国手语 | 孤立词 | — | 130 000 | 27 |
SMILE[ | 德国手语 | 孤立词 | — | — | 30 |
MS-ASL[ | 美国手语 | 孤立词 | 1 000 | 25 513 | 222 |
WLASL[ | 美国手语 | 孤立词 | 2 000 | 21 083 | 119 |
BosphorusSign22k[ | 土耳其手语 | 孤立词 | 744 | 22 542 | 6 |
AUTSL[ | 土耳其手语 | 孤立词 | 226 | 38 336 | 43 |
CSSL5000[ | 中国手语 | 孤立词 | 1 000 | 100 000 | 10 |
BSL-1K[ | 英国手语 | 孤立词 | 1 064 | 1 412 | 40 |
INCLUDE[ | 印度手语 | 孤立词 | 263 | 4 287 | 7 |
NMFs-CSL[ | 中国手语 | 孤立词 | 1 067 | 32 010 | 10 |
WLASL-LEX[ | 美国手语 | 孤立词 | 800 | 10 017 | 3 |
Boston-104[ | 美国手语 | 连续手语语句 | 128 | 214 | 3 |
SIGNUM[ | 德国手语 | 孤立词+连续手语语句 | 455 | 1 230 | 25 |
S-pot[ | 芬兰手语 | 连续手语语句 | — | 5 539 | 5 |
RWTH-PHOENIX-WEATHER-2014[ | 德国手语 | 连续手语语句 | 1 081 | 6 841 | 9 |
USTC-CCSL[ | 中国手语 | 连续手语语句 | 178 | 25 000 | 50 |
RWTH-PHOENIX-WEATHER-2014-T[ | 德国手语 | 连续手语语句 | 1 066 | 8 257 | 9 |
RCSD[ | 中国手语 | 连续手语语句 | 242 | — | 10 |
KETI[ | 韩国手语 | 连续手语语句 | 524 | 14 672 | 14 |
GSL[ | 希腊手语 | 孤立词+连续手语语句 | 310 | 10 290 | 7 |
MEDIAPI-SKEL corpus[ | 法国手语 | 连续手语语句 | 14 383 | 368 | >100 |
How2Sign[ | 美国手语 | 连续手语语句 | 16 000 | 2 500 | 11 |
CSL-Daily[ | 中国手语 | 连续手语语句 | 2 000 | 20 654 | 10 |
Table 1 Summary of sign language datasets
数据集 | 语言 | 类型 | 属性 | ||
---|---|---|---|---|---|
包含手语词个数 | 视频数 | 手语演示者个数 | |||
Boston ASLLVD[ | 美国手语 | 孤立词 | 2 742 | 9 794 | 6 |
AUSLAN[ | 澳大利亚手语 | 孤立词 | — | 1 100 | 100 |
BSL Corpus[ | 英国手语 | 孤立词 | 5 000 | — | 249 |
PSL Kinect30[ | 波兰手语 | 孤立词 | 30 | 300 | 1 |
DEVISIGN-G/D/L[ | 中国手语 | 孤立词 | 36/500/2 000 | 24 000 | 8 |
LSE-sign[ | 西班牙手语 | 孤立词 | 2 400 | 2 400 | 2 |
LSA64[ | 阿根廷手语 | 孤立词 | 64 | 3 200 | 10 |
USTC-ICSL[ | 中国手语 | 孤立词 | 500 | 125 000 | 50 |
DISFA[ | 英国手语 | 孤立词 | — | 130 000 | 27 |
SMILE[ | 德国手语 | 孤立词 | — | — | 30 |
MS-ASL[ | 美国手语 | 孤立词 | 1 000 | 25 513 | 222 |
WLASL[ | 美国手语 | 孤立词 | 2 000 | 21 083 | 119 |
BosphorusSign22k[ | 土耳其手语 | 孤立词 | 744 | 22 542 | 6 |
AUTSL[ | 土耳其手语 | 孤立词 | 226 | 38 336 | 43 |
CSSL5000[ | 中国手语 | 孤立词 | 1 000 | 100 000 | 10 |
BSL-1K[ | 英国手语 | 孤立词 | 1 064 | 1 412 | 40 |
INCLUDE[ | 印度手语 | 孤立词 | 263 | 4 287 | 7 |
NMFs-CSL[ | 中国手语 | 孤立词 | 1 067 | 32 010 | 10 |
WLASL-LEX[ | 美国手语 | 孤立词 | 800 | 10 017 | 3 |
Boston-104[ | 美国手语 | 连续手语语句 | 128 | 214 | 3 |
SIGNUM[ | 德国手语 | 孤立词+连续手语语句 | 455 | 1 230 | 25 |
S-pot[ | 芬兰手语 | 连续手语语句 | — | 5 539 | 5 |
RWTH-PHOENIX-WEATHER-2014[ | 德国手语 | 连续手语语句 | 1 081 | 6 841 | 9 |
USTC-CCSL[ | 中国手语 | 连续手语语句 | 178 | 25 000 | 50 |
RWTH-PHOENIX-WEATHER-2014-T[ | 德国手语 | 连续手语语句 | 1 066 | 8 257 | 9 |
RCSD[ | 中国手语 | 连续手语语句 | 242 | — | 10 |
KETI[ | 韩国手语 | 连续手语语句 | 524 | 14 672 | 14 |
GSL[ | 希腊手语 | 孤立词+连续手语语句 | 310 | 10 290 | 7 |
MEDIAPI-SKEL corpus[ | 法国手语 | 连续手语语句 | 14 383 | 368 | >100 |
How2Sign[ | 美国手语 | 连续手语语句 | 16 000 | 2 500 | 11 |
CSL-Daily[ | 中国手语 | 连续手语语句 | 2 000 | 20 654 | 10 |
特征提取网络 | 参考文献号 |
---|---|
GCN | [ |
GooleNet | [ |
VGG-Net | [ |
ResNet | [ |
CaffeNet | [ |
AlexNet | [ |
其他2D-CNN | [ |
C3D | [ |
B3D | [ |
I3D | [ |
S3D | [ |
其他3D-CNN | [ |
Table 2 Representative work of feature extraction
特征提取网络 | 参考文献号 |
---|---|
GCN | [ |
GooleNet | [ |
VGG-Net | [ |
ResNet | [ |
CaffeNet | [ |
AlexNet | [ |
其他2D-CNN | [ |
C3D | [ |
B3D | [ |
I3D | [ |
S3D | [ |
其他3D-CNN | [ |
[1] | 吕会华. 中国手语语言学[M]. 北京: 知识产权出版社有限责任公司, 2019. |
LV H H. The linguistics of Chinese sign language[M]. Bei-jing: Intellectual Property Publishing House, 2019. | |
[2] |
HUANG J, ZHOU W G, LI H Q, et al. Attention-based 3D-CNNs for large-vocabulary sign language recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(9): 2822-2832.
DOI URL |
[3] | KOLLER O, ZARGARAN S, NEY H. Re-sign: re-aligned end-to-end sequence modelling with deep recurrent CNN-HMMs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3416-3424. |
[4] | REN Z, YUAN J S, MENG J J, et al. Robust part-based hand gesture recognition using Kinect sensor[J]. IEEE Transac-tions on Multimedia, 2013, 15(5): 1110-1120. |
[5] | HUANG J, ZHOU W G, ZHANG Q L, et al. Video-based sign language recognition without temporal segmentation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2257-2264. |
[6] | WEN H Y, RAMOS R J, DEY A K. Serendipity: finger ges-ture recognition using an off-the-shelf smartwatch[C]//Pro-ceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, May 7-12, 2016. New York: ACM, 2016: 3847-3851. |
[7] | EKIZ D, KAYA G E, BUĞUR S, et al. Sign sentence reco-gnition with smart watches[C]//Proceedings of the 25th Sig-nal Processing and Communications Applications Conference, Antalya, May 15-18, 2017. Piscataway: IEEE, 2017: 1-4. |
[8] | HOU J H, LI X Y, ZHU P D, et al. SignSpeaker: a real-time, high-precision smartwatch-based sign language translator[C]//Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Oct 21-25, 2019. New York: ACM, 2019: 1-15. |
[9] | WANG Z B, ZHAO T D, MA J X, et al. Hear sign langu-age: a real-time end-to-end sign language recognition sys-tem[J]. IEEE Transactions on Mobile Computing, 2020, 21(7): 2398-2410. |
[10] | CAMGÖZ N C, KOLLER O, HADFIELD S, et al. Sign lan-guage transformers: joint end-to-end sign language recogni-tion and translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10023-10033. |
[11] | KOLLER O. Quantitative survey of the state of the art in sign language recognition[J]. arXiv:2008.09918, 2020. |
[12] | FORSTER J, SCHMIDT C, KOLLER O, et al. Extensions of the sign language recognition and translation corpus RWTH-PHOENIX-Weather[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation, Reyk-javik, May 26-31, 2014. Paris: European Language Resour-ces Association, 2014: 1911-1916. |
[13] | 张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021-1032. |
ZHANG S J, ZHANG Q, LI H. Review of sign language recognition based on deep learning[J]. Journal of Electro-nics & Information Technology, 2020, 42(4): 1021-1032. | |
[14] |
米娜瓦尔·阿不拉, 阿里甫·库尔班, 解启娜, 等. 手语识别方法与技术综述[J]. 计算机工程与应用, 2021, 57(18): 1-12.
DOI |
ABULA M, KUERBAN A, XIE Q N, et al. Review of sign language recognition methods and techniques[J]. Computer Engineering and Applications, 2021, 57(18): 1-12.
DOI |
|
[15] | 秦梦现. 手语识别研究综述[J]. 软件导刊, 2021, 20(2):250-252. |
QIN M X. A survey of sign language recognition[J]. Soft-ware Guide, 2021, 20(2): 250-252. | |
[16] | HU M C, LIU H T, LI J W, et al. Sign language recognition in complex background scene based on adaptive skin color modelling and support vector machine[J]. International Jour-nal of Big Data Intelligence, 2018, 5(1/2): 21. |
[17] |
LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
DOI URL |
[18] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Con-ference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 886-893. |
[19] | LAPTEV I, MARSZALEK M, SCHMID C, et al. Learning realistic human actions from movies[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recog-nition, Anchorage, Jun 23-28, 2008. Piscataway: IEEE, 2008: 1-8. |
[20] | BO L F, LAI K, REN X F, et al. Object recognition with hierarchical kernel descriptors[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recogni-tion, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Computer Society, 2011: 1729-1736. |
[21] | OREIFEJ O, LIU Z C. HON4D: histogram of oriented 4D normal for activity recognition from depth sequences[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Piscataway: IEEE, 2013: 716-723. |
[22] | WANG J, LIU Z C, CHOROWSKI J, et al. Robust 3D ac-tion recognition with random occupancy patterns[C]//LNCS 7573: Proceedings of the 12th European Conference on Com-puter Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 872-885. |
[23] | MIRANDA L, VIEIRA T, MORERA D M, et al. Real-time gesture recognition from depth data through key poses learning and decision forests[C]//Proceedings of the 2012 25th SIBG-RAPI Conference on Graphics, Patterns and Images, Ouro Preto, Aug 22-25, 2012. Washington: IEEE Computer Society, 2012: 268-275. |
[24] | VIEIRA A W, NASCIMENTO E R, OLIVEIRA G L, et al. STOP: space-time occupancy patterns for 3D action recogni-tion from depth map sequences[C]//LNCS 7441: Proceedings of the 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-cations, Buenos Aires, Sep 3-6, 2012. Berlin, Heidelberg: Springer, 2012: 252-259. |
[25] | ZHANG J H, ZHOU W G, XIE C, et al. Chinese sign lan-guage recognition with adaptive HMM[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo, Seattle, Jul 11-15, 2016. Washington: IEEE Computer Society, 2016: 1-6. |
[26] | YIN F, CHAI X J, CHEN X L. Iterative reference driven metric learning for signer independent isolated sign langu-age recognition[C]//LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016: 434-450. |
[27] | ZHENG L H, LIANG B. Sign language recognition using depth images[C]//Proceedings of the14th International Con-ference on Control, Automation, Robotics and Vision, Phu-ket, Nov 13-15, 2016. Piscataway: IEEE, 2016: 1-6. |
[28] | LI F F, PERONA P. A Bayesian hierarchical model for lear-ning natural scene categories[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Piscata-way: IEEE, 2005: 524-531. |
[29] | CHEN G, GIULIANI M, CLARKE D, et al. Action recogni-tion using ensemble weighted multi-instance learning[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, May 31-Jun 7, 2014. Piscataway: IEEE, 2014: 4520-4525. |
[30] | YANG R D, SARKAR S. Detecting coarticulation in sign language using conditional random fields[C]//Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Com-puter Society, 2006: 108-112. |
[31] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
DOI URL |
[32] | AGARWAL A, THAKUR M K. Sign language recognition using Microsoft Kinect[C]//Proceedings of the 6th International Conference on Contemporary Computing, Noida, Aug 8-10, 2013. Piscataway: IEEE, 2013: 181-185. |
[33] | WANG H J, CHAI X J, ZHOU Y, et al. Fast sign language recognition benefited from low rank approximation[C]//Pro-ceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Ljubljana, May 4-8, 2015. Washington: IEEE Computer So-ciety, 2015: 1-6. |
[34] | BURGESCJ C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Disco-very, 1998, 2(2): 121-167. |
[35] | LIU F T, WANG Y T, MA H P. Gesture recognition with wearable 9-axis sensors[C]//Proceedings of the 2017 IEEE International Conference on Communications, Paris, May 21-25, 2017. Piscataway: IEEE, 2017: 1-6. |
[36] | PU J F, ZHOU W G, LI H Q. Sign language recognition with multi-modal features[C]//LNCS 9917: Proceedings of the 17th Pacific-Rim Conference on Multimedia, Xi’an, Sep 15-16, 2016. Cham: Springer, 2016: 252-261. |
[37] | KUMAR N. Sign language recognition for hearing impaired people based on hands symbols classification[C]//Procee-dings of the 2017 International Conference on Computing, Communication and Automation, Greater Noida, May 5-6, 2017. Piscataway: IEEE, 2017: 244-249. |
[38] | GUO D, ZHOU W G, LI H Q, et al. Online early-late fu-sion based on adaptive HMM for sign language recognition[J]. ACM Transactions on Multimedia Computing, Commu-nications, and Applications, 2017, 14(1): 1-18. |
[39] | LIU T, ZHOU W G, LI H Q. Sign language recognition with long short-term memory[C]//Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 2871-2875. |
[40] | HU H Z, ZHOU W G, LI H Q. Hand-model-aware sign language recognition[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelli-gence. Menlo Park: AAAI, 2021: 1558-1566. |
[41] |
WANG F, DU Y X, WANG G R, et al. (2+1) D-SLR: an efficient network for video sign language recognition[J]. Neural Computing and Applications, 2022, 34 (3): 2413-2423.
DOI URL |
[42] | HU H, ZHOU W, LI H. Hand-model-aware sign language recognition[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2021: 1558-1566. |
[43] |
WU D, PIGOU L, KINDERMANS P J, et al. Deep dynamic neural networks for multimodal gesture segmentation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(8): 1583-1597.
DOI PMID |
[44] |
WANG H J, CHAI X J, CHEN X L. A novel sign language recognition framework using hierarchical Grossmann cov-ariance matrix[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2806-2814.
DOI URL |
[45] |
MITTAL A, KUMAR P, ROY P, et al. A modified LSTM model for continuous sign language recognition using leap motion[J]. IEEE Sensors Journal, 2019, 19(16): 7056-7063.
DOI URL |
[46] |
WEI C C, ZHAO J, ZHOU W G, et al. Semantic boundary detection with reinforcement learning for continuous sign language recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 1138-1149.
DOI URL |
[47] | KOLLER O, NEY H, BOWDEN R. Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 3793-3802. |
[48] | KOLLER O, ZARGARAN O, NEY H, et al. Deep sign: hybrid CNN-HMM for continuous sign language recogni-tion[C]//Proceedings of the British Machine Vision Confer-ence 2016, York, Sep 19-22, 2016. Durham: BMVA Press, 2016: 1-12. |
[49] | LI H B, GAO L Q, HAN R Z, et al. Key action and joint CTC-Attention based sign language recognition[C]//Procee-dings of the 2020 IEEE International Conference on Acous-tics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 2348-2352. |
[50] | CHENG K L, YANG Z Y, CHEN Q F, et al. Fully convolu-tional networks for continuous sign language recognition[C]//LNCS 12369: Proceedings of the 16th European Con-ference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 697-714. |
[51] | TRAN D, BOURDEV L D, FERGUS R, et al. Learning spatio-temporal features with 3D convolutional networks[C]//Pro-ceedings of the 2015 IEEE International Conference on Com-puter Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4489-4497. |
[52] | JI S W, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 221-231. |
[53] | CARREIRA J, ZISSERMAN A. Quo Vadis, action recogni-tion? A new model and the kinetics dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4724-4733. |
[54] | HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 6546-6555. |
[55] | ZHAO K, ZHANG K J, ZHAI Y, et al. Real-time sign lan-guage recognition based on video stream[C]//Proceedings of the 2020 39th Chinese Control Conference, Shenyang, Jul 27-29, 2020. Piscataway: IEEE, 2021: 158-174. |
[56] |
LIAO Y Q, XIONG P W, MIN W D, et al. Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks[J]. IEEE Access, 2019, 7: 38044-38054.
DOI URL |
[57] | YANG Z Y, SHI Z M, SHEN X Y, et al. SF-Net: structured-feature network for continuous sign language recognition[J]. arXiv:1908.01341, 2019. |
[58] | PU J F, ZHOU W G, LI H Q. Iterative alignment network for continuous sign language recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscata-way: IEEE, 2019: 4165-4174. |
[59] |
HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI URL |
[60] | GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Bidirec-tional LSTM networks for improved phoneme classifica-tion and recognition[C]//LNCS 3697: Proceedings of the 15th International Conference on Artificial Neural Networks, Warsaw, Sep 11-15, 2005. Berlin, Heidelberg: Springer, 2005: 799-804. |
[61] | CHO K, VAN MERRIËNBOER B, GÜLÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proc-essing, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1724-1734. |
[62] | PU J F, ZHOU W G, HU H Z, et al. Boosting continuous sign language recognition via cross modality augmentation[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 1497-1505. |
[63] | CAMGÖZ N C, HADFIELD S, KOLLER O, et al. SubUNets: end-to-end hand shape and continuous sign language recog-nition[C]//Proceedings of the 2017 IEEE International Con-ference on Computer Vision, Venice, Oct 22-29, 2017. Wa-shington: IEEE Computer Society, 2017: 3075-3084. |
[64] | PU J F, ZHOU W G, LI H Q. Dilated convolutional network with iterative optimization for continuous sign language recog-nition[C]//Proceedings of the 27th International Joint Con-ference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. San Francisco: Morgan Kaufmann, 2018: 885-891. |
[65] | GRAVES A, FERNÁNDEZ S, GOMEZ F, et al. Connec-tionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd International Conference on Machine learning, Pitts-burgh, Jun 25-29, 2006. New York: ACM, 2006: 369-376. |
[66] | WANG S, GUO D, ZHOU W G, et al. Connectionist tem-poral fusion for sign language translation[C]//Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 1483-1491. |
[67] | XIAO Q K, CHANG X, ZHANG X, et al. Multi-informa-tion spatial-temporal LSTM fusion continuous sign language neural machine translation[J]. IEEE Access, 2020, 8: 216718-216728. |
[68] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[69] | TUNGA A, NUTHALAPATI S V, WACHS J P. Pose-based sign language recognition using GCN and BERT[C]//Procee-dings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 5-9, 2021. Piscataway: IEEE, 2021: 31-40. |
[70] | NIU Z, MAK B. article-title>Stochastic fine-grained labeling of multi-state sign glosses for continuous sign language recognition[C]//LNCS 12361: Proceedings of the 16th European Con-ference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 172-186. |
[71] | VAROL G, MOMENI L, ALBANIE S, et al. Read and attend: temporal localisation in sign language videos[C]//Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Pisca-taway: IEEE, 2021: 16857-16866. |
[72] | ZHANG Z H, PU J F, ZHUANG L S, et al. Continuous sign language recognition via reinforcement learning[C]//Procee-dings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 285-289. |
[73] | YIN Q F, TAO W Q, LIU X L, et al. Neural sign language translation with SF-transformer[C]//Proceedings of the 6th International Conference on Innovation in Artificial Intelli-gence, Guangzhou, Mar 4-6, 2022. New York: ACM, 2022: 64-68. |
[74] |
ZHOU H, ZHOU W G, ZHOU Y, et al. Spatial-temporal multi-cue network for sign language recognition and translation[J]. IEEE Transactions on Multimedia, 2022, 24: 768-779.
DOI URL |
[75] |
PAPASTRATIS I, DIMITROPOULOS K, KONSTANTINIDIS D, et al. Continuous sign language recognition through cross-modal alignment of video and text embeddings in a joint-latent space[J]. IEEE Access, 2020, 8: 91170-91180.
DOI URL |
[76] |
GAO L Q, LI H B, LIU Z, et al. RNN-transducer based Chinese sign language recognition[J]. Neurocomputing, 2021, 434: 45-54.
DOI URL |
[77] | CAMGÖZ N C, HADFIELD S, KOLLER O, et al. Neural sign language translation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7784-7793. |
[78] |
GUO D, ZHOU W G, LI A Y, et al. Hierarchical recurrent deep fusion using adaptive clip summarization for sign lan-guage translation[J]. IEEE Transactions on Image Processing, 2019, 29: 1575-1590.
DOI URL |
[79] | LI D X, XU C C, YU X, et al. TSPNet: hierarchical feature learning via temporal semantic pyramid for sign language translation[C]//Advances in Neural Information Processing Systems 33, 2020: 12034-12045. |
[80] | CHEN Y T, WEI F Y, SUN X, et al. A simple multi-modality transfer learning baseline for sign language translation[J]. arXiv:2203.04287, 2022. |
[81] | CAMGÖZ N C, KOLLER O, HADFIELD S, et al. Multi-channel transformers for multi-articulatory sign language translation[C]//LNCS 12538: Proceedings of the 2020 Euro-pean Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 301-319. |
[82] | FANG B Y, CO J, ZHANG M. DeepASL: enabling ubiqui-tous and non-intrusive word and sentence-level sign langu-age translation[C]//Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, Nov 6-8, 2017. New York: ACM, 2017: 1-13. |
[83] | YIN K, READ J. Better sign language translation with STMC-transformer[C]//Proceedings of the 28th International Con-ference on Computational Linguistics, Barcelona, Dec 8-13, 2020: 5975-5989. |
[84] | ZHOU H, ZHOU W G, QI W Z, et al. Improving sign lan-guage translation with monolingual data by sign back-translation[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 1316-1325. |
[85] | YIN A X, ZHAO Z, LIU J L, et al. SimulSLT: end-to-end simultaneous sign language translation[C]// Proceedings of the 29th ACM International Conference on Multimedia, Cheng-du, Oct 20-24, 2021. New York: ACM, 2021: 4118-4127. |
[86] |
GAO W, MA J Y, WU J Q, et al. Sign language recognition based on HMM/ANN/DP[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(5): 587-602.
DOI URL |
[87] | IWAI Y, WATANABE K, YAGI Y, et al. Gesture recognition by using colored gloves[C]// Proceedings of the 1996 Inter-national Conference on Pattern Recognition, Beijing, Oct 14-17, 1996. Piscataway: IEEE, 1996: 76-81. |
[88] | MISTRY J, INDEN B. An approach to sign language trans-lation using the Intel real sense camera[C]// Proceedings of the 2018 10th Computer Science and Electronic Enginee-ring Conference, Colchester, Sep 19-21, 2018. Piscataway: IEEE, 2018: 219-224. |
[89] |
MEJÍA-PERÉZ K, CÓRDOVA-ESPARZA D M, TERVEN J, et al. Automatic recognition of Mexican sign language using a depth camera and recurrent neural networks[J]. Applied Sciences, 2022, 12(11): 5523.
DOI URL |
[90] | ATHITSOS V, NEIDLE C, SCLAROFF S, et al. The Ame-rican sign language lexicon video dataset[C]// Proceedings of the 2008 IEEE Computer Society Conference on Com-puter Vision and Pattern Recognition, Anchorage, Jun 23-28, 2008. Washington: IEEE Computer Society, 2008: 1-8. |
[91] |
JOHNSTON T. From archive to corpus: transcription and annotation in the creation of signed language corpora[J]. International Journal of Corpus Linguistics, 2010, 15(1): 106-131.
DOI URL |
[92] | SCHEMBRI A, FENLON J, RENTELIS R, et al. Building the British sign language corpus[J]. Language Documenta-tion & Conservation, 2013, 7: 136-154. |
[93] | OSZUST M, MARIAN W. Polish sign language words recog-nition with Kinect[C]// Proceedings of the 6th International Conference on Human System Interactions, Sopot, Jun 6-8, 2013. Piscataway: IEEE, 2013: 219-226. |
[94] | CHAI X J, WANG H J, CHEN X L. The DEVISIGN large vocabulary of Chinese sign language database and baseline evaluations: VIPL-TR-14-SLR-001[R]. 2014. |
[95] | GUTIERREZ-SIGUT E, COSTELLO B, BAUS C, et al. LSE-sign: a lexical database for Spanish sign language[J]. Beha-vior Research Methods, 2016, 48(1): 123-137. |
[96] | RONCHETTI F, QUIROGA F, ESTREBOU C A, et al. LSA-64: an Argentinian sign language dataset[C]// Proceedings of the XXII Congreso Argentino de Ciencias de la Compu-tación, San Luis, Jun 2, 2016. Argentina: Nueva Editorial Universitario, 2016: 794-803. |
[97] | MAVADATI S M, SANGER P, MAHOOR M H. Extended DISFA dataset: investigating posed and spontaneous facial expressions[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 1452-1459. |
[98] | EBLING S, CAMGÖZ N C, BRAEM P B, et al. SMILE Swiss German sign language dataset[C]// Proceedings of the 11th International Conference on Language Resources and Evaluation, Miyazaki, May 7-12, 2018: 1-9. |
[99] | JOZE H R V, KOLLER O. MS-ASL: a large-scale data set and benchmark for understanding American sign language[C]// Proceedings of the 30th British Machine Vision Con-ference 2019, Cardiff, Sep 9-12, 2019. Durham: BMVA Press, 2019: 100. |
[100] | LI D X, OPAZO C R, YU X, et al. Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision,Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 1448-1458. |
[101] | ÖZDEMIR O, KINDIROĞLU A A, CAMGÖZ N C, et al. BosphorusSign22k sign language recognition dataset[C]// Proceedings of the 9th Workshop on the Representation and Processing of Sign Languages, Marseille, May 11-16, 2020: 181-188. |
[102] |
SINCAN O M, KELES H Y. AUTSL: a large scale multi-modal Turkish sign language dataset and baseline methods[J]. IEEE Access, 2020, 8: 181340-181355.
DOI URL |
[103] | ALBANIE S, VAROL G, MOMENI L, et al. BSL-1K: sca-ling up co-articulated sign language recognition using mou-thing cues[C]// LNCS 12356:Proceedings of the 16th Euro-pean Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 35-53. |
[104] | SRIDHAR A, GANESAN R G, KUMAR P, et al. INCLUDE: a large scale dataset for Indian sign language recognition[C]// Proceedings of the 28th ACM International Confer-ence on Multimedia, New York, Oct 12-16, 2020. New York: ACM, 2020: 1366-1375. |
[105] | TAVELLA F, SCHLEGEL V, ROMEO M, et al. WLASL-LEX: a dataset for recognising phonological properties in american sign language[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 453-463. |
[106] | DREUW P, FORSTER J, DESELAERS T, et al. Efficient approximations to model-based joint tracking and recogni-tion of continuous sign language[C]// Proceedings of the 8th IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, Sep 17-19, 2008. Washing-ton: IEEE Computer Society, 2008: 1-6. |
[107] | VON A U, KRAISS K F. Towards a video corpus for signer-independent continuous sign language recognition[C]// Pro-ceedings of the 2007 International Conference on Gesture in Human-Computer Interaction and Simulation, Lisbon, 2007. |
[108] | VIITANIEMI V, JANTUNEN T, SAVOLAINEN L, et al. S-pot—a benchmark in spotting signs within continuous signing[C]// Proceedings of the 9th International Conference on Language Resources and Evaluation, Reykjavik, May 26-31, 2014. European Language Resources Association, 2014. |
[109] | KO S K, KIM C J, JUNG H, et al. Neural sign language translation based on human key point estimation[J]. App-lied Sciences, 2019, 9(13): 2683. |
[110] | ADALOGLOU N M, CHATZIS T, PAPASTRATIS I, et al. A comprehensive study on deep learning-based methods for sign language recognition[J]. IEEE Transactions on Multi-media, 2022, 24: 1750-1762. |
[111] | BULL H, BRAFFORT A, GOUIFFÈS M. MEDIAPI-SKEL—a 2D-skeleton video database of french sign language with aligned French subtitles[C]// Proceedings of the 12th Confer-ence on Language Resources and Evaluation, Marseille, May 11-16, 2020. Stroudsburg: ACL, 2020: 6063-6068. |
[112] | DUARTE A C, PALASKAR S, VENTURA L, et al. How-2Sign: a large-scale multimodal dataset for continuous American sign language[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2021: 2735-2744. |
[113] | 中国残疾人联合会教育就业部, 中国聋人协会. 中国手语[M]. 北京: 华夏出版社, 2003. |
China Disable Persons’ Federation Employment Service and Administration Center, China Association of Persons with Hearing Disabilities. Chinese sign language[M]. Beijing: Huaxia Publishing House, 2003. | |
[114] | ZHANGZ Y. Microsoft Kinect sensor and its effect[J]. IEEE Multimedia, 2012, 19(2): 4-10. |
[115] | WANG H J, CHAI X J, HONG X P, et al. Isolated sign language recognition with grassmann covariance matrices[J]. ACM Transactions on Accessible Computing, 2016, 8 (4): 1-21. |
[116] | EIDE E, GISH H, JEANRENAUD P, et al. Understanding and improving speech recognition performance through the use of diagnostic tools[C]// Proceedings of the 1995 In-ternational Conference on Acoustics, Speech, and Signal Processing, Detroit, May 9-12, 1995. Washington: IEEE Computer Society, 1995: 221-224. |
[117] | PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]// Procee-dings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Jul 6-12, 2002. Stroudsburg: ACL, 2002: 311-318. |
[118] | VEDANTAM R, ZITNICK C L, PARIKH D. CIDEr-R: consensus-based image description evaluation[C]// Procee-dings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washing-ton: IEEE Computer Society, 2015: 4566-4575. |
[119] | LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]// Proceedings of the 2004 Workshop on Text Summarization Branches Out, Barcelona, Jul 25, 2004. Stroudsburg: ACL, 2004: 74-81. |
[120] | BANERJEE S, LAVIE A. METEOR: an automatic metric for MT evaluation with improved correlation with human judgments[C]// Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization@ACL 2005, Ann Arbor, Jun 29, 2005. Stroudsburg: ACL, 2005: 65-72. |
[121] | MARTINEAU J, FININ T. Delta TFIDF: an improved fea-ture space for sentiment analysis[C]// Proceedings of the 3rd International Conference on Weblogs and Social Media, San Jose, May 17-20, 2009. Menlo Park: AAAI, 2009: 258-261. |
[122] | WEI C C, ZHOU W G, PU J F, et al. Deep grammatical multi-classifier for continuous sign language recognition[C]// Proceedings of the 5th IEEE International Conference on Multimedia Big Data, Singapore, Sep 11-13, 2019. Pisca-taway: IEEE, 2019: 435-442. |
[123] | KOLLER O, NEY H, BOWDEN R. Automatic alignment of HamnoSys subunits for continuous sign language recog-nition[C]// Proceedings of the 10th Edition of Its Language Resources and Evaluation Conference 7th Workshop on the Representation and Processing of Sign Languages, Por-torož, May 23-28, 2016. New York: McGraw-Hill, 2016: 121-128. |
[124] | SARHAN N, LAURI M, FRINTROP S. Multi-phase fine-tuning: a new fine-tuning approach for sign language recog-nition[J]. KI-Künstliche Intelligent, 2022, 36(1): 91-98. |
[125] | CUI R P, HU L, ZHANG C S. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1610-1618. |
[126] | KONSTANTINIDIS D, DIMITROPOULOS K, DARAS P. A deep learning approach for analyzing video and skele-tal features in sign language recognition[C]// Proceedings of the 2018 IEEE International Conference on Imaging Sys-tems and Techniques, Krakow, Oct 16-18, 2018. Piscataway: IEEE, 2018: 1-6. |
[127] | GUO D, ZHOU W G, LI H Q, et al. Hierarchical LSTM for sign language translation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th In-novative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artifi-cial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6845-6852. |
[128] |
KOLLER O, ZARGARAN S, NEY H, et al. Deep sign: enabling robust statistical continuous sign language recog-nition via hybrid CNN-HMMs[J]. International Journal of Computer Vision, 2018, 126(12): 1311-1325.
DOI URL |
[129] |
CUI R P, LIU H, ZHANG C S. A deep neural framework for continuous sign language recognition by iterative trai-ning[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1880-1891.
DOI URL |
[130] | KOLLER O, CAMGOZ N C, NEY H, et al. Weakly super-vised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2020, 42(9): 2306-2320. |
[131] | BORG M, CAMILLERI K P. Phonologically-meaningful subunits for deep learning-based sign language recognition[C]// LNCS 12536: Proceedings of the 16th European Con-ference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 199-217. |
[132] | BULL H, GOUIFFÈS M, BRAFFORT A. Automatic segmen-tation of sign language into subtitle-units[C]// LNCS 12536: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 186-198. |
[133] | ZHOU M J, NG M, CAI Z X, et al. Self-attention-based fully-inception networks for continuous sign language recogni-tion[C]// Proceedings of the 24th European Conference on Artificial Intelligence, Santiago de Compostela, Aug 29-Sep 8, 2020. Amsterdam: IOS Press, 2020: 2832-2839. |
[134] | MIN Y C, HAO A M, CHAI X J, et al. Visual alignment constraint for continuous sign language recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11542-11551. |
[135] | PEI X K, GUO D, ZHAO Y. Continuous sign language recognition based on pseudo-supervised learning[C]// Pro-ceedings of the 2nd Workshop on Multimedia for Acces-sible Human Computer Interfaces, Nice, Oct 25, 2019. New York: ACM, 2019: 33-39. |
[136] | RENZ K, STACHE N C, ALBANIE S, et al. Sign language segmentation with temporal convolutional networks[C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 2135-2139. |
[137] | ZHOU H, ZHOU W G, LI H Q. Dynamic pseudo label de-coding for continuous sign language recognition[C]// Procee-dings of the 2019 IEEE International Conference on Multi-media and Expo, Shanghai, Jul 8-12, 2019. Piscataway: IEEE, 2019: 1282-1287. |
[138] | SONG P P, GUO D, XIN H R, et al. Parallel temporal en-coder for sign language translation[C]// Proceedings of the 2019 IEEE International Conference on Image Processing,Taiwan, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1915-1919. |
[139] | GUO D, WANG S, TIAN Q, et al. Dense temporal convolu-tion network for sign language translation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 744-750. |
[140] | GÖKÇE Ç, ÖZDEMIR O, KINDIROĞLU A A, et al. Score-level multi cue fusion for sign language recognition[C]// LNCS 12536: Proceedings of the 2020 European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 294-309. |
[141] | LI D X, YU X, XU C C, et al. Transferring cross-domain knowledge for video sign language recognition[C]// Procee-dings of the 2020 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 6204-6213. |
[142] | VAROL G, MOMENI L, ALBANIE S, et al. Read and at-tend: temporal localisation in sign language videos[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021:16857-16866. |
[143] | MORYOSSEF A, TSOCHANTARIDIS I, DINN J, et al. Evaluating the immediate applicability of pose estimation for sign language recognition[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recog-nition. Piscataway: IEEE, 2021: 3434-3440. |
[144] | JIANG S Y, SUN B, WANG L C, et al. Skeleton aware multi-modal sign language recognition[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3413-3423. |
[145] | LI R M, MENG L. Multi-view spatial-temporal network for continuous sign language recognition[J]. arXiv:2204.08747, 2022. |
[1] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[2] | ZHU Bingyu, LIU Zhen, ZHANG Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. |
[3] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[4] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[5] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[6] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[7] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[8] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[9] | HUANG Hao, GE Hongwei. Deep Residual Expression Recognition Network to Enhance Inter-class Discrimination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849. |
[10] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[11] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[12] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[13] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[14] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[15] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/