Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 384-394.DOI: 10.3778/j.issn.1673-9418.2009097
• Artificial Intelligence • Previous Articles Next Articles
LI Zhaoyang1, LI Lin1,+(), TAO Xiaohui2
Received:
2020-08-14
Revised:
2020-10-20
Online:
2022-02-01
Published:
2020-11-06
About author:
LI Zhaoyang, born in 1997, M.S. candidate. Her research interests include machine learning and data mining.Supported by:
通讯作者:
+ E-mail: cathylilin@whut.edu.cn作者简介:
李朝阳(1997—),女,山东泰安人,硕士研究生,主要研究方向为机器学习、数据挖掘。基金资助:
CLC Number:
LI Zhaoyang, LI Lin, TAO Xiaohui. Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Fore-casting[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 384-394.
李朝阳, 李琳, 陶晓辉. 面向动态交通流预测的双流图卷积网络[J]. 计算机科学与探索, 2022, 16(2): 384-394.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009097
Dataset | Model | 15 min | 30 min | 60 min | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | ||
PeMS-BAY | ARIMA | 1.62 | 3.30 | 3.50 | 2.33 | 4.76 | 5.40 | 3.38 | 6.50 | 8.30 |
FC-LSTM | 2.05 | 4.19 | 4.80 | 2.20 | 4.55 | 5.20 | 2.37 | 4.96 | 5.70 | |
DCRNN | 1.38 | 2.95 | 2.90 | 1.74 | 3.97 | 3.90 | 2.07 | 4.74 | 4.90 | |
Graph WaveNet | 1.30 | 2.74 | 2.73 | 1.63 | 3.70 | 3.67 | 1.95 | 4.52 | 4.63 | |
TSGCN | 1.12 | 2.22 | 2.27 | 1.36 | 2.88 | 3.71 | 1.62 | 3.61 | 3.71 | |
METR-LA | ARIMA | 3.99 | 8.21 | 9.60 | 5.15 | 10.45 | 12.70 | 6.90 | 13.23 | 17.40 |
FC-LSTM | 3.44 | 6.30 | 9.60 | 3.77 | 7.23 | 10.90 | 4.37 | 8.69 | 13.20 | |
DCRNN | 2.77 | 5.38 | 7.30 | 3.15 | 6.45 | 8.80 | 3.60 | 7.60 | 10.50 | |
Graph WaveNet | 2.69 | 5.15 | 6.90 | 3.07 | 6.22 | 8.37 | 3.53 | 7.37 | 10.01 | |
TSGCN | 2.55 | 4.68 | 6.45 | 2.81 | 5.38 | 7.40 | 3.14 | 6.24 | 8.71 |
Table 1 Performance comparison of TSGCN with baseline models
Dataset | Model | 15 min | 30 min | 60 min | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | MAE | RMSE | MAPE/% | ||
PeMS-BAY | ARIMA | 1.62 | 3.30 | 3.50 | 2.33 | 4.76 | 5.40 | 3.38 | 6.50 | 8.30 |
FC-LSTM | 2.05 | 4.19 | 4.80 | 2.20 | 4.55 | 5.20 | 2.37 | 4.96 | 5.70 | |
DCRNN | 1.38 | 2.95 | 2.90 | 1.74 | 3.97 | 3.90 | 2.07 | 4.74 | 4.90 | |
Graph WaveNet | 1.30 | 2.74 | 2.73 | 1.63 | 3.70 | 3.67 | 1.95 | 4.52 | 4.63 | |
TSGCN | 1.12 | 2.22 | 2.27 | 1.36 | 2.88 | 3.71 | 1.62 | 3.61 | 3.71 | |
METR-LA | ARIMA | 3.99 | 8.21 | 9.60 | 5.15 | 10.45 | 12.70 | 6.90 | 13.23 | 17.40 |
FC-LSTM | 3.44 | 6.30 | 9.60 | 3.77 | 7.23 | 10.90 | 4.37 | 8.69 | 13.20 | |
DCRNN | 2.77 | 5.38 | 7.30 | 3.15 | 6.45 | 8.80 | 3.60 | 7.60 | 10.50 | |
Graph WaveNet | 2.69 | 5.15 | 6.90 | 3.07 | 6.22 | 8.37 | 3.53 | 7.37 | 10.01 | |
TSGCN | 2.55 | 4.68 | 6.45 | 2.81 | 5.38 | 7.40 | 3.14 | 6.24 | 8.71 |
[1] |
VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5):307-318.
DOI URL |
[2] | WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theo-retical basis and empirical results[J]. Journal of Trans-portation Engineering, 2003, 129(6):664-672. |
[3] |
KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3):1-9.
DOI URL |
[4] |
JEONG Y S, BYON Y J, CASTRO-NETO M M, et al. Su-pervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1700-1707.
DOI URL |
[5] |
WANG J, SHI Q. Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector mac-hine theory[J]. Transportation Research Part C: Emerging Technologies, 2013, 27:219-232.
DOI URL |
[6] | ZHANG Y, XIE Y. Forecasting of short-term freeway vo-lume with v-support vector machines[J]. Transportation Re-search Record: Journal of the Transportation Research Board, 2007(1):92-99. |
[7] | ERMAGUN A, LEVINSON D. Spatiotemporal traffic fore-casting: review and proposed directions[J]. Transport Re-views, 2018, 38(6):786-814. |
[8] | VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we’re going[J]. Transportation Research Part C: Emerging Tech-nologies, 2014, 43:3-19. |
[9] |
MA X, DAI Z, HE Z, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4):818.
DOI URL |
[10] | 杜圣东, 李天瑞, 杨燕, 等. 一种基于序列到序列时空注意力学习的交通流预测模型[J]. 计算机研究与发展, 2020, 57(8):1715-1728. |
DU S D, LI T R, YANG Y, et al. A sequence-to-sequence spatial-temporal attention learning model for urban traffic flow prediction[J]. Journal of Computer Research and De-velopment, 2020, 57(8):1715-1728. | |
[11] | ZHANG J, ZHENG Y, QI D. Deep spatio-temporal resi-dual networks for citywide crowd flows prediction[C]//Pro-ceedings of the 31st AAAI Conference on Artificial Intel-ligence. Menlo Park: AAAI, 2017: 1655-1661. |
[12] | ZHANG J, ZHENG Y, QI D, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Ar-tificial Intelligence, 2018, 259:147-166. |
[13] | JIANG W, ZHANG L. Geospatial data to images: a deep-learning framework for traffic forecasting[J]. Tsinghua Science & Technology, 2019, 24(1):52-64. |
[14] | YAO H, TANG X, WEI H, et al. Modeling spatial-temporal dynamics for traffic prediction[J]. arXiv:1803.01254, 2018. |
[15] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780. |
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Com-puters, 2020, 43(5):755-780. | |
[16] | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional re-current neural network: data-driven traffic forecasting[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018. |
[17] | FANG S, ZHANG Q, MENG G, et al. GSTNet: global spatial-temporal network for traffic flow prediction[C]//Procee-dings of the 28th International Joint Conference on Artifi-cial Intelligence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 10-16. |
[18] | GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow fore-casting[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 922-929. |
[19] | DIAO Z, WANG X, ZHANG D, et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 890-897. |
[20] | 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3):759-769. |
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow fore-casting[J]. Journal of Software, 2019, 30(3):759-769. | |
[21] | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 3634-3640. |
[22] |
ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21:3848-3858.
DOI URL |
[23] | WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelli-gence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 1907-1913. |
[24] | ZHAI D, LIU A, CHEN S, et al. SeqST-ResNet: a sequen-tial spatial temporal ResNet for task prediction in spatial crowdsourcing[C]//LNCS 11446: Proceedings of the 2019 International Conference on Database Systems for Advan-ced Applications. Cham: Springer, 2019: 260-275. |
[25] | YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelli-gence. Menlo Park: AAAI, 2018: 2588-2595. |
[26] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequ-ence learning with neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Red Hook: Curran Associates, 2014: 3104-3112. |
[27] | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral net-works and locally connected networks on graphs[C]//Pro-ceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014. |
[28] | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast locali-zed spectral filtering[C]//Proceedings of the Advances in Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 3844-3852. |
[29] | DAUPHIN Y N, FAN A, AULI M, et al. Language mode-ling with gated convolutional networks[C]// Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 933-941. |
[30] | VAN DEN OORD A, DIELEMAN S, ZEN H, et al. Wave-Net: a generative model for raw audio[C]// Proceedings of the 9th ISCA Speech Synconfproc Workshop, Sunnyvale, Sep 13-15, 2016: 125. |
[1] | ZHAO Xuewu, WANG Hongmei, LIU Chaohui, LI Lingling, BO Shukui, JI Junzhong. Artificial Jellyfish Search Optimization Algorithm for Human Brain Functional Parcellation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1829-1841. |
[2] | GUO Jinxin, ZHANG Guangting, ZHANG Yunquan, CHEN Zehua, JIA Haipeng. High-Performance Implementation and Optimization of Cooley-Tukey FFT Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1304-1315. |
[3] | WEI Guang, QIAN Depei, YANG Hailong, LUAN Zhongzhi. Practice on Program Energy Consumption Optimization by Energy Measurement and Analysis Using FPowerTool [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1291-1303. |
[4] | MAO Yimin, GENG Junhao. Improved Parallel Random Forest Algorithm Combining Information Theory and Norm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1064-1075. |
[5] | LI Jinhong, WANG Lizhen, ZHOU Lihua. Top-k Average Utility Co-location Pattern Mining of Fuzzy Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1053-1063. |
[6] | CHEN Liyue, CHAI Di, WANG Leye. UCTB: Spatiotemporal Crowd Flow Prediction Toolbox [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 835-843. |
[7] | ZHANG Shaowei, WANG Xin, CHEN Zirui, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Supervised Joint Entity Relation Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733. |
[8] | JIANG Yiying, ZHANG Liping, JIN Feihu, HAO Xiaohong. Groups Nearest Neighbor Query of Mixed Data in Spatial Database [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 348-358. |
[9] | ZHAO Hengtai, ZHAO Yuhai, YUAN Ye, JI Hangxu, QIAO Baiyou, WANG Guoren. Optimization for Large-Scale Dimension Table Connection Technology in Distributed Environment [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 337-347. |
[10] | LIU Weiming, ZHANG Chi, MAO Yimin. Hybrid Parallel Frequent Itemsets Mining Algorithm by Using N-List Structure [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 120-136. |
[11] | ZONG Fengbo, ZHAO Yuhai, WANG Guoren, JI Hangxu. Optimization Method of Projection and Order for Multiple Tables Join [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 106-119. |
[12] | LIN Hongwu1,2, YOU Chao1,2, ZHOU Minghui1,2+, MEI Hong1,2. Proxy Centric Approach for Component Resource Monitoring on OSGi Platform [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(1): 23-31. |
[13] | ZHU Xiaohu1,2, SONG Wenjun1,2, WANG Chongjun1,2+, XIE Junyuan1,2. Improved Algorithm Based on Girvan-Newman Algorithm for Community Detection [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1101-1108. |
[14] | ZENG Hongwei+; MIAO Huaikou. Applying Model Checking to Data Flow Testing of Components [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1121-1130. |
[15] | YUAN Chongyi1,2, HUANG Yu1,2,3+, ZHAO Wen1,2,3, HUANG Shuzhi2. O_expressions: A Petri Net Representation* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(11): 961-976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/