Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 835-843.DOI: 10.3778/j.issn.1673-9418.2012072
• System Software and Software Engineering • Previous Articles Next Articles
CHEN Liyue1,2, CHAI Di3, WANG Leye1,2,+()
Received:
2020-12-04
Revised:
2021-02-01
Online:
2022-04-01
Published:
2021-02-04
About author:
CHEN Liyue, born in 1998, Ph.D. candidate. His research interests include ubiquitous computing and urban computing.Supported by:
通讯作者:
+ E-mail: leyewang@pku.edu.cn作者简介:
陈李越(1998—),男,湖北黄冈人,博士研究生,主要研究方向为普适计算、城市计算。基金资助:
CLC Number:
CHEN Liyue, CHAI Di, WANG Leye. UCTB: Spatiotemporal Crowd Flow Prediction Toolbox[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 835-843.
陈李越, 柴迪, 王乐业. UCTB:时空人群流动预测工具箱[J]. 计算机科学与探索, 2022, 16(4): 835-843.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012072
键 | 值(含义) |
---|---|
TimeRange | 数据的时间范围 |
TimeFitness | 数据的时间粒度 |
Node | 存储节点型数据 |
Grid | 存储网格型数据 |
ExternalFeature | 存储外部特征 |
Table 1 Datasets format in UCTB
键 | 值(含义) |
---|---|
TimeRange | 数据的时间范围 |
TimeFitness | 数据的时间粒度 |
Node | 存储节点型数据 |
Grid | 存储网格型数据 |
ExternalFeature | 存储外部特征 |
接口名称 | 接口功能 |
---|---|
GridTrafficLoader | 读取并预处理网格型数据 |
NodeTrafficLoader | 读取并预处理节点型数据 |
ST_MoveSample | 以不同间隔采样时序数据 |
GraphGenerator | 产生不同类型的图 |
Table 2 Data processing interface in UCTB
接口名称 | 接口功能 |
---|---|
GridTrafficLoader | 读取并预处理网格型数据 |
NodeTrafficLoader | 读取并预处理节点型数据 |
ST_MoveSample | 以不同间隔采样时序数据 |
GraphGenerator | 产生不同类型的图 |
模型 | 时间知识 | 空间知识 |
---|---|---|
ARIMA[ | √ | — |
HM | √ | — |
XGBoost[ | √ | — |
ST-ResNet[ | √ | √ |
DCRNN[ | √ | √ |
ST-MGCN[ | √ | √ |
STMeta[ | √ | √ |
Table 3 Implemented models in UCTB
模型 | 时间知识 | 空间知识 |
---|---|---|
ARIMA[ | √ | — |
HM | √ | — |
XGBoost[ | √ | — |
ST-ResNet[ | √ | √ |
DCRNN[ | √ | √ |
ST-MGCN[ | √ | √ |
STMeta[ | √ | √ |
高级模型层 | 模型层描述 |
---|---|
DCGRU[ | 同时建模时空关联 |
GCLSTM[ | 同时建模时空关联 |
GCL[ | 基于ChebNet谱域图卷积 |
GAL[ | 图注意层 |
Table 4 High-level layers in UCTB
高级模型层 | 模型层描述 |
---|---|
DCGRU[ | 同时建模时空关联 |
GCLSTM[ | 同时建模时空关联 |
GCL[ | 基于ChebNet谱域图卷积 |
GAL[ | 图注意层 |
模块 | 接口 | 接口功能 |
---|---|---|
训练 | MiniBatchFeedDict | 分批训练 |
EarlyStopping | 早停机制 | |
评估 | RMSE/MAPE | 评估模型 |
Table 5 Training and evaluating interface in UCTB
模块 | 接口 | 接口功能 |
---|---|---|
训练 | MiniBatchFeedDict | 分批训练 |
EarlyStopping | 早停机制 | |
评估 | RMSE/MAPE | 评估模型 |
[1] | 郑宇. 城市计算概述[J]. 武汉大学学报(信息科学版), 2015, 40(1):1-13. |
ZHENG Y. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):1-13. | |
[2] |
HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3):249-254.
DOI URL |
[3] | HOANG M X, ZHENG Y, SINGH A K. FCCF: forecasting citywide crowd flows based on big data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, Oct 31 - Nov 3, 2016. New York: ACM, 2016: 1-10. |
[4] | LI Y X, ZHENG Y, ZHANG H C, et al. Traffic prediction in a bike-sharing system[C]// Proceedings of the 23rd SIG-SPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, Nov 3-6, 2015. New York: ACM, 2015: 1-10. |
[5] | LV Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873. |
[6] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
DOI URL |
[7] | CHO K, MERRIËNBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv: 1406. 1078, 2014. |
[8] | YU R, LI Y G, SHAHABI C, et al. Deep learning: a generic approach for extreme condition traffic forecasting[C]// Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Apr 27-29, 2017. Philadelphia: SIAM, 2017: 777-785. |
[9] |
YUAN N J, ZHENG Y, XIE X, et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3):712-725.
DOI URL |
[10] | ZHANG J B, ZHENG Y, QI D K, et al. DNN-based prediction model for spatio-temporal data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, Oct 31-Nov 3, 2016. New York: ACM, 2016: 1-4. |
[11] |
KE J T, ZHENG H Y, YANG H, et al. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 85:591-608.
DOI URL |
[12] | ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 1655-1661. |
[13] |
ZHANG J B, ZHENG Y, SUN J K, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3):468-478.
DOI URL |
[14] | LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. arXiv: 1707. 01926, 2017. |
[15] | CHAI D, WANG L Y, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Nov 6-9, 2018. New York: ACM, 2018: 397-400. |
[16] | GENG X, LI Y G, WANG L Y, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3656-3663. |
[17] | 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3):759-769. |
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3):759-769. | |
[18] | LIANG Y X, KE S Y, ZHANG J B, et al. GeoMAN: multi-level attention networks for geo-sensory time series prediction[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3428-3434. |
[19] | ZHANG J N, SHI X J, XIE J Y, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[J]. arXiv: 1803. 07294, 2018. |
[20] | WANG X Y, MA Y, WANG Y Q, et al. Traffic flow prediction via spatial temporal graph neural network[C]// Proceedings of the Web Conference 2020, Taiwan, China, Apr 20-24, 2020. New York: ACM, 2020: 1082-1092. |
[21] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[22] | ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, Nov 2-4, 2016. Berkeley: USENIX Association, 2016: 265-283. |
[23] | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845. |
[24] | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree Boosting system[C]// Proceedings of the 22nd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 785-794. |
[25] | WANG L Y, CHAI D, LIU X Z, et al. Exploring the generalizability of spatio-temporal crowd flow prediction: meta-modeling and an analytic framework[J]. arXiv: 2009. 09379, 2020. |
[26] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv: 1710. 10903, 2017. |
[1] | ZHAO Xuewu, WANG Hongmei, LIU Chaohui, LI Lingling, BO Shukui, JI Junzhong. Artificial Jellyfish Search Optimization Algorithm for Human Brain Functional Parcellation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1829-1841. |
[2] | GUO Jinxin, ZHANG Guangting, ZHANG Yunquan, CHEN Zehua, JIA Haipeng. High-Performance Implementation and Optimization of Cooley-Tukey FFT Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1304-1315. |
[3] | WEI Guang, QIAN Depei, YANG Hailong, LUAN Zhongzhi. Practice on Program Energy Consumption Optimization by Energy Measurement and Analysis Using FPowerTool [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1291-1303. |
[4] | MAO Yimin, GENG Junhao. Improved Parallel Random Forest Algorithm Combining Information Theory and Norm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1064-1075. |
[5] | LI Jinhong, WANG Lizhen, ZHOU Lihua. Top-k Average Utility Co-location Pattern Mining of Fuzzy Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1053-1063. |
[6] | ZHANG Shaowei, WANG Xin, CHEN Zirui, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Supervised Joint Entity Relation Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733. |
[7] | JIANG Yiying, ZHANG Liping, JIN Feihu, HAO Xiaohong. Groups Nearest Neighbor Query of Mixed Data in Spatial Database [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 348-358. |
[8] | LI Zhaoyang, LI Lin, TAO Xiaohui. Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Fore-casting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 384-394. |
[9] | ZHAO Hengtai, ZHAO Yuhai, YUAN Ye, JI Hangxu, QIAO Baiyou, WANG Guoren. Optimization for Large-Scale Dimension Table Connection Technology in Distributed Environment [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 337-347. |
[10] | LIU Weiming, ZHANG Chi, MAO Yimin. Hybrid Parallel Frequent Itemsets Mining Algorithm by Using N-List Structure [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 120-136. |
[11] | ZONG Fengbo, ZHAO Yuhai, WANG Guoren, JI Hangxu. Optimization Method of Projection and Order for Multiple Tables Join [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 106-119. |
[12] | LIN Hongwu1,2, YOU Chao1,2, ZHOU Minghui1,2+, MEI Hong1,2. Proxy Centric Approach for Component Resource Monitoring on OSGi Platform [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(1): 23-31. |
[13] | ZHU Xiaohu1,2, SONG Wenjun1,2, WANG Chongjun1,2+, XIE Junyuan1,2. Improved Algorithm Based on Girvan-Newman Algorithm for Community Detection [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1101-1108. |
[14] | ZENG Hongwei+; MIAO Huaikou. Applying Model Checking to Data Flow Testing of Components [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1121-1130. |
[15] | YUAN Chongyi1,2, HUANG Yu1,2,3+, ZHAO Wen1,2,3, HUANG Shuzhi2. O_expressions: A Petri Net Representation* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(11): 961-976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/