Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (1): 53-73.DOI: 10.3778/j.issn.1673-9418.2206020
• Frontiers·Surveys • Previous Articles Next Articles
LIU Chunlei, CHEN Tian‘en2,3, WANG Cong, JIANG Shuwen, CHEN Dong
Online:
2023-01-01
Published:
2023-01-01
刘春磊,陈天恩,王聪,姜舒文,陈栋
LIU Chunlei, CHEN Tian‘en, WANG Cong, JIANG Shuwen, CHEN Dong. Survey of Few-Shot Object Detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73.
刘春磊, 陈天恩, 王聪, 姜舒文, 陈栋. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2206020
[1] LUO Q, FANG X, LIU L, et al. Automated visual defect detection for flat steel surface: a survey[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(3): 626-644. [2] CAO W, LIU Q, HE Z. Review of pavement defect detection methods[J]. IEEE Access, 2020, 8: 14531-14544. [3] 方钧婷, 谭晓阳. 注意力级联网络的金属表面缺陷检测算法[J]. 计算机科学与探索, 2021, 15(7): 1245-1254. FANG J T, TAN X Y. Defect detection of metal surface based on attention cascade R-CNN[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1245-1254. [4] NAGAR H, SHARMA R. A comprehensive survey on pest detection techniques using image processing[C]//Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems, Maisamaguda, May 13-15, 2020. Piscataway: IEEE, 2020: 43-48. [5] MUHAMMAD K, ULLAH A, LLORET J, et al. Deep learning for safe autonomous driving: current challenges and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4316-4336. [6] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. [7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 779-788. [9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7263-7271. [10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. [12] LIN T Y, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2980-2988. [13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. [14] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//LNCS 12346: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229. [15] 潘兴甲, 张旭龙, 董未名, 等. 小样本目标检测的研究现状[J]. 南京信息工程大学学报 (自然科学版), 2019, 11(6): 698-705. PAN X J, ZHANG X L, DONG W M, et al. A survey of few-shot object detection[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2019, 11(6): 698-705. [16] 刘浩宇, 王向军. 小样本目标检测综述[J]. 导航与控制, 2021, 20(1): 1-14. LIU H Y, WANG X J. A survey of few-shot object detection[J]. Navigation and Control, 2021, 20(1): 1-14. [17] 张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11. ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection[J]. Computer Engineering and Applications, 2022, 58(5): 1-11. [18] BANSAL A, SIKKA K, SHARMA G, et al. Zero-shot object detection[C]//LNCS 11205: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 397-414. [19] HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attention and co-excitation[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 2721-2730. [20] RAHMAN S, KHAN S, BARNES N, et al. Any-shot object detection[C]//LNCS 12624: Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, Nov 30-Dec 4, 2020. Cham: Springer, 2020: 89-106. [21] LI P, LI Y, CUI H, et al. Class-incremental few-shot object detection[J]. arXiv:2105.07637, 2021. [22] LI A, LI Z. Transformation invariant few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 3094-3102. [23] KARLINSKY L, SHTOK J, ALFASSY A, et al. Starnet: towards weakly supervised few-shot object detection[J]. arXiv:2003.06798, 2020. [24] WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv:2003.06957, 2020. [25] EVERINGHAM M, VAN GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [26] LIN T Y, MAIRE M, BELONGIE S J, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [27] GUPTA A, DOLLAR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5356-5364. [28] KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8420-8429. [29] FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4013-4022. [30] 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937. ZHAO P F, XIE L B, PENG L. Deep small object detection algorithm integrating attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. [31] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. [32] ZHANG S, LUO D, WANG L, et al. Few-shot object detection by second-order pooling[C]//Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, Nov 30-Dec 4, 2020. Cham: Springer, 2020: 369-387. [33] WU A, HAN Y, ZHU L, et al. Universal-prototype augmentation for few-shot object detection[J]. arXiv:2103.01077, 2021. [34] YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9577-9586. [35] WU X, SAHOO D, HOI S. Meta-RCNN: meta learning for few-shot object detection[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 1679-1687. [36] LIU L, MA B, ZHANG Y, et al. Adaptive fully-dual network for few-shot object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, Oct 20-24, 2021. New York: ACM, 2021: 2549-2557. [37] CHEN X, JIANG M, ZHAO Q. Leveraging bottom-up and top-down attention for few-shot object detection[J]. arXiv: 2007.12104, 2020. [38] YANG Z, WANG Y, CHEN X, et al. Context-transformer: tackling object confusion for few-shot detection[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-20, 2020. Menlo Park: AAAI, 2020: 12653-12660. [39] LI Y, CHENG Y, LIU L, et al. Low-shot object detection via classification refinement[J]. arXiv:2005.02641, 2020. [40] XU H, WANG X, SHAO F, et al. Few-shot object detection via sample processing[J]. IEEE Access, 2021, 9: 29207-29221. [41] AGARWAL A, MAJEE A, SUBRAMANIAN A, et al. Attention guided cosine margin to overcome class-imbalance in few-shot road object detection[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Hawaii, Jan 4-8, 2022. Piscataway: IEEE, 2022: 221-230. [42] CHEN T I, LIU Y C, SU H T, et al. Dual-awareness attention for few-shot object detection[J]. IEEE Transactions on Multimedia, 2021, 23: 1-11. [43] HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[J]. arXiv:2104.07719, 2021. [44] QUAN J, GE B, CHEN L. Cross attention redistribution with contrastive learning for few shot object detection[J]. Displays, 2022, 72: 102162. [45] 彭豪, 李晓明. 多尺度选择金字塔网络的小样本目标检测算法[J]. 计算机科学与探索, 2022, 16(7): 1649-1660. PENG H, LI X M. Multi-scale selection pyramid networks for small-sample target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1649-1660. [46] ZHANG S, WANG L, MURRAY N, et al. Kernelized few-shot object detection with efficient integral aggregation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 19207-19216. [47] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [48] ZHANG G, LUO Z, CUI K, et al. Meta-DETR: few-shot object detection via unified image-level meta-learning[J]. arXiv:2103.11731, 2021. [49] HU H Z, BAI S, LI A X, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 10185-10194. [50] LEE H, LEE M, KWAK N. Few-shot object detection by attending to per-sample-prototype[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Hawaii, Jan 4-8, 2022. Piscataway: IEEE, 2022: 2445-2454. [51] HAN G, MA J, HUANG S, et al. Few-shot object detection with fully cross-transformer[J]. arXiv:2203.15021, 2022. [52] 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16. LIU W T, LU X M. Research progress of transformer based on computer vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16. [53] KIM G, JUNG H G, LEE S W. Spatial reasoning for few-shot object detection[J]. Pattern Recognition, 2021, 120: 108118. [54] ZHU C C, CHEN F Y, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 8782-8791. [55] KIM G, JUNG H G, LEE S W. Few-shot object detection via knowledge transfer[C]//Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics, Oct 11-14, 2020. Piscataway: IEEE, 2020: 3564-3569. [56] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543. [57] LIU W, LI H, YU S, et al. Dynamic relevance learning for few-shot object detection[J]. arXiv:2108.02235, 2021. [58] HAN G, HE Y, HUANG S, et al. Query adaptive few-shot object detection with heterogeneous graph convolutional networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 3263-3272. [59] CAO Y H, WANG J Q, JIN Y, et al. Few-shot object detection via association and discrimination[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Dec 6-14, 2021: 16570-16581. [60] WU A, ZHAO S, DENG C, et al. Generalized and discriminative few-shot object detection via SVD-dictionary enhancement[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Dec 6-14, 2021: 6353-6364. [61] KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative-based metric learning for classification and few-shot object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5197-5206. [62] LI B, YANG B, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 7363-7372. [63] ZHANG G, CUI K, WU R, et al. PNPDet: efficient few-shot detection without forgetting via plug-and-play sub-networks[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscataway: IEEE, 2021: 3823-3832. [64] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6569-6578. [65] SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 7352-7362. [66] VAN DEN OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807. 03748, 2018. [67] QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled faster R-CNN for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 8661-8670. [68] LI Y, FENG W, LYU S, et al. MM-FSOD: meta and metric integrated few-shot object detection[J]. arXiv:2012.15159, 2020. [69] 郭永坤, 朱彦陈, 刘莉萍, 等. 空频域图像增强方法研究综述[J]. 计算机工程与应用, 2022, 58(11): 23-32. GUO Y K, ZHU Y C, LIU L P, et al. Research review of space-frequency domain image enhancement methods[J]. Computer Engineering and Applications, 2022, 58(11): 23-32. [70] VU A K N, NGUYEN N D, NGUYEN K D, et al. Few-shot object detection via baby learning[J]. Image and Vision Computing, 2022, 120: 104398. [71] XIAO Y, MARLET R. Few-shot object detection and viewpoint estimation for objects in the wild[C]//LNCS 12370: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 192-210. [72] WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]//LNCS 12370: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 456-472. [73] ZHANG W, WANG Y X. Hallucination improves few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 13008-13017. [74] KAUL P, XIE W, ZISSERMAN A. Label, verify, correct: a simple few shot object detection method[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 14237-14247. [75] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, Jun 18-23, 2018. Piscataway: IEEE, 2018: 6154-6162. [76] GUIRGUIS K, HENDAWY A, ESKANDAR G, et al. CFA: constraint-based finetuning approach for generalized few-shot object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 4039-4049. [77] YANG Y, WEI F, SHI M, et al. Restoring negative information in few-shot object detection[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 3521-3532. [78] ZHANG L, ZHOU S, GUAN J, et al. Accurate few-shot object detection with support-query mutual guidance and hybrid loss[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 14424-14432. [79] ZHANG W, WANG Y X, FORSYTH D A. Cooperating RPN??s improve few-shot object detection[J]. arXiv:2011.10142, 2020. [80] FAN Z, MA Y, LI Z, et al. Generalized few-shot object detection without forgetting[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 4527-4536. [81] VAN HORN G, MAC AODHA O, SONG Y, et al. The inaturalist species classification and detection dataset[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8769-8778. [82] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Piscataway: IEEE, 2009: 248-255. [83] EVERINGHAM M, WINN J. The pascal visual object classes challenge 2012 (VOC2012) development kit[R]. 2012. [84] HUANG J, CHEN F, LIN L, et al. Plug-and-play few-shot object detection with meta strategy and explicit localization inference[J]. arXiv:2110.13377, 2021. [85] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2874-2883. [86] MAJEE A, AGRAWAL K, SUBRAMANIAN A. Few-shot learning for road object detection[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2021. Menlo Park: AAAI, 2021: 115-126. [87] VARMA G, SUBRAMANIAN A, NAMBOODIRI A, et al. IDD: a dataset for exploring problems of autonomous navigation in unconstrained environments[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Hawaii, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1743-1751. [88] XIAO Z, QI J, XUE W, et al. Few-shot object detection with self-adaptive attention network for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4854-4865. [89] XIAO Z, LIU Q, TANG G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644. [90] 李成范, 赵俊娟. 面向遥感图像的小样本目标检测改进算法研究[J]. 上海大学学报(自然科学版), 2022, 28(2): 314-323. LI C F, ZHAO J J. Improved approach to detection small sample target based on remote sensing images[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(2): 314-323. [91] 刘凯旋. 基于小样本的水稻害虫检测算法研究[D]. 大庆: 黑龙江八一农垦大学, 2021. LIU K X. Research on rice pest detection algorithm based on small samples[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021. [92] 桂江生, 费婧怡, 傅霞萍. 三维小样本元学习模型的大豆食心虫虫害高光谱检测[J]. 光谱学与光谱分析, 2021, 41(7): 2171-2174. GUI J S, FEI J Y, FU X P. Hyperspectral imaging for detection of leguminivora glycinivorella based on 3D few-shot meta-learning model[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2171-2174. |
[1] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[2] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[3] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[4] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[5] | FU Xuanyi, ZHANG Luanjing, LIANG Wenke, BI Fangming, FANG Weidong. Review on Development of Anchor Mechanism in Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 791-805. |
[6] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[7] | WANG Yanni, YU Lixian. SSD Object Detection Algorithm with Effective Fusion of Attention and Multi-scale [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447. |
[8] | RUAN Chenzhao, ZHANG Xiangsen, LIU Ke, ZHAO Zengshun. Progress on Human-Object Interaction Detection of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 323-336. |
[9] | XU Guangsheng, WANG Shitong. Incomplete Modality Transfer Learning via Latent Low-Rank Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2775-2787. |
[10] | SHI Caijuan, REN Bijuan, WANG Ziwen, YAN Jinwei, SHI Ze. Survey of Camouflaged Object Detection Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2734-2751. |
[11] | ZHOU Yan, PU Lei, LIN Liangxi, LIU Xiangyu, ZENG Fanzhi, ZHOU Yuexia. Research Progress on 3D Object Detection of LiDAR Point Cloud [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2695-2717. |
[12] | LI Qingyuan, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. SSD Object Detection Algorithm with Attention and Cross-Scale Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2575-2586. |
[13] | CHANG Tian, ZHANG Zongzhang, YU Yang. Stochastic Ensemble Policy Transfer [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2531-2536. |
[14] | LI Chunbiao, XIE Linbo, PENG Li. Salient Object Detection with Feature Hybrid Enhancement and Multi-loss Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2395-2404. |
[15] | LI Kecen, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Survey of One-Stage Small Object Detection Methods in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/