Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (3): 549-560.DOI: 10.3778/j.issn.1673-9418.2209014
• Frontiers·Surveys • Previous Articles Next Articles
WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng
Online:
2023-03-01
Published:
2023-03-01
王文森,黄凤荣,王旭,刘庆璘,羿博珩
WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560.
王文森, 黄凤荣, 王旭, 刘庆璘, 羿博珩. 基于深度学习的视觉惯性里程计技术综述[J]. 计算机科学与探索, 2023, 17(3): 549-560.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209014
[1] GEMEINER P, EINRAMHOF P, VINCZE M. Simultaneous motion and structure estimation by fusion of inertial and vision data[J]. International Journal of Robotics Research,2007, 26(6): 591-605. [2] SERVANT F, HOULIER P, MARCHAND é. Improving monocular plane-based SLAM with inertial measures[C]//Proceedings of the 2010 IEEE/RSJ International Confe-rence on Intelligent Robots and Systems, Taipei, China, Oct 18-22, 2010. Piscataway: IEEE, 2010: 3810-3815. [3] HUANG G. Visual-inertial navigation: a concise review[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2575-7075. [4] DELMERICO J, SCARAMUZZA D. A benchmark compa-rison of monocular visual-inertial odometry algorithms for flying robots[C]//Proceedings of the 2018 IEEE Interna-tional Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 2502-2509. [5] SERVIèRES M, RENAUDIN V, DUPUIS A, et al. Visual and visual-inertial slam: state of the art, classification, and experimental benchmarking[J]. Journal of Sensors, 2021(1):1-26. [6] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [7] FARSAL W, ANTER S, RAMDANI M. Deep learning: an overview[C]//Proceedings of the 12th International Confe-rence on Intelligent Systems: Theories and Applications, Rabat, Nov 24-26, 2017. New York: ACM, 2018: 1-6. [8] FORSTER C, CARLONE L, DELLAERT F, et al. IMU preintegration on manifold for efficient visual-inertial maxi-mum-a-posteriori estimation[C]//Proceedings of the Robotics: Science and Systems, Rome, Jul 13-17, 2015. Cambridge: MIT Press, 2015. [9] YANG Y, HUANG G. Aided inertial navigation with geo-metric features: observability analysis[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 2334-2340. [10] CHEN C, ROSA S, LU C X, et al. SelectFusion: a generic framework to selectively learn multisensory fusion[J]. arXiv:1912.13077, 2019. [11] 任泽裕, 王振超, 柯尊旺, 等. 多模态数据融合综述[J]. 计算机工程与应用, 2021, 57(18): 49-64. REN Z Y, WANG Z C, KE Z W, et al. A survey of multi-modal data fusion[J]. Computer Engineering and Applica-tions, 2021, 57(18): 49-64. [12] RAMBACH J, TEWARI A, PAGANI A, et al. Learning to fuse: a deep learning approach to visual-inertial camera pose estimation[C]//Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, Merida, Sep 19-23, 2016. Piscataway: IEEE, 2016: 71-76. [13] LI C, WASLANDER S L. Towards end-to-end learning of visual inertial odometry with an EKF[C]//Proceedings of the 17th Conference on Computer and Robot Vision, Ottawa, May 13-15, 2020. Piscataway: IEEE, 2020: 190-197. [14] WANG S, CLARK R, WEN H, et al. DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 2043-2050. [15] 余洪山, 郭丰, 郭林峰, 等. 融合改进SuperPoint网络的鲁棒单目视觉惯性SLAM[J]. 仪器仪表学报, 2021, 42(1): 116-126. YU H S, GUO F, GUO L F, et al. Robust monocular visual-inertial SLAM based on the improved SuperPoint network[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 116-126. [16] DETONE D, MALISIEWICZ T, RABINOVICH A. Super-point: self-supervised interest point detection and descri-ption[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 2160-7508. [17] QIN T, LI P, SHEN S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [18] CHEN D, WANG N, XU R, et al. RNIN-VIO: robust neural inertial navigation aided visual-inertial odometry in challen-ging scenes[C]//Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality, Bari, Oct 4-8, 2021. Piscataway: IEEE, 2021: 275-283. [19] WANG T, CHANG Z, ZHANG W, et al. Research on the integrated positioning method of inertial/visual aided by convolutional neural network[C]//Proceedings of the 2021 International Conference on Control, Automation and Infor-mation Sciences, Xi??an, Oct 14-17, 2021. Piscataway: IEEE, 2021: 2475-7896. [20] SHAN M, FENG Q, ATANASOV N. OrcVIO: object residual constrained visual-inertial odometry[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Oct 24, 2020-Jan 24, 2021. Pisca-taway: IEEE, 2020: 5104-5111. [21] ZUO X, MERRILL N, LI W, et al. CodeVIO: visual-inertial odometry with learned optimizable dense depth[C]//Procee-dings of the 2021 IEEE International Conference on Robotics and Automation, Xi??an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 14382-14388. [22] MOURIKIS A I, ROUMELIOTIS S I. A multi-state cons-traint Kalman filter for vision-aided inertial navigation[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Apr 10-14, 2007. Piscataway: IEEE, 2007: 3565-3572. [23] CLARK R, WANG S, WEN H, et al. VINet: visual-inertial odometry as a sequence-to-sequence learning problem[C]//Proceedings of the 31st AAAI Conference on Artificial Inte-lligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3995-4001. [24] CHEN C, ROSA S, MIAO Y, et al. Selective sensor fusion for neural visual-inertial odometry[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 10542-10551. [25] ALMALIOGLU Y, TURAN M, SAPUTRA M R U, et al. SelfVIO: self-supervised deep monocular visual-inertial odometry and depth estimation[J]. Neural Networks, 2022, 150(6): 119-136. [26] SHINDE K, LEE J, HUMT M, et al. Learning multiplica-tive interactions with Bayesian neural networks for visual-inertial odometry[J]. arXiv:2007.07630, 2020. [27] LIU L, LI G, LI T H. ATVIO: attention guided visual-inertial odometry[C]//Proceedings of the 2021 IEEE Inter-national Conference on Acoustics, Speech and Signal Proce-ssing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 4125-4129. [28] ASLAN M F, DURDU A, SABANCI K. Visual-inertial image-odometry (VIIONet): a Gaussian process regression-based deep architecture proposal for UAV pose estimation[J]. Measurement, 2022, 194: 111030. [29] SEEGER M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. [30] TIAN Y, COMPERE M. A case study on visual-inertial odometry using supervised, semi-supervised and unsuper-vised learning methods[C]//Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality, San Diego, Dec 9-11, 2019. Piscataway: IEEE, 2019: 203-207. [31] SHAMWELL E J, LEUNG S, NOTHWANG W D. Vision-aided absolute trajectory estimation using an unsupervised deep network with online error correction[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Piscataway: IEEE, 2018: 2524-2531. [32] SHAMWELL E J, LINDGREN K, LEUNG S, et al. Unsu-pervised deep visual-inertial odometry with online error correction for RGB-D imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2478-2493. [33] LINDGREN K, LEUNG S, NOTHWANG W D, et al. Boom-VIO: bootstrapped monocular visual-inertial odometry with absolute trajectory estimation through unsupervised deep learning[C]//Proceedings of the 19th International Confe-rence on Advanced Robotics, Belo Horizonte, Dec 2-6, 2019. Piscataway: IEEE, 2019: 516-522. [34] HAN L, LIN Y, DU G, et al. DeepVIO: self-supervised deep learning of monocular visual inertial odometry using 3D geometric constraints[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, Nov 3-8, 2019. Piscataway: IEEE, 2019: 6906-6913. [35] WEI P, HUA G, HUANG W, et al. Unsupervised monocular visual-inertial odometry network[C]//Proceedings of the 29th International Joint Conferences on Artificial Intelligence, Yokohama, Jan 7-15, 2020: 2347-2354. [36] ZHANG Z, DERICHE R, FAUGERAS O, et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J]. Artifi-cial Intelligence, 1995, 78(1/2): 87-119. [37] DOSOVITSKIY A, FISCHER P, ILG E, et al. Flownet: lear-ning optical flow with convolutional networks[C]//Procee-dings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 2758-2766. [38] ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[C]//Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Pisca-taway: IEEE, 2017: 1647-1655. [39] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proce-ssing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. [40] JIE H, LI S, GANG S. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2020, 42(8): 2011-2023. [41] WEYTJENS H, WEERDT J D. Process outcome prediction: CNN vs. LSTM (with attention)[C]//Proceedings of the 2020 International Conference on Business Process Mana-gement, Seville, Sep 13-18, 2020. Cham: Springer, 2020: 321-333. [42] DONG N, ZHAO L, WU C H, et al. Inception v3 based cervical cell classification combined with artificially extracted features[J]. Applied Soft Computing, 2020, 93: 106311. [43] XUE F, WANG Q, WANG X, et al. Guided feature selec-tion for deep visual odometry[C]//LNCS 11366: Procee-dings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 293-308. [44] GEIGER A, LENZ P, URTASUN R. Are we ready for auto-nomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Piscataway: IEEE, 2012: 3354-3361. [45] BARRON J T. A general and adaptive robust loss function[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 4331-4339. [46] GEIGER A, LENZ P, STILLER C, et al. Vision meets robo-tics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. [47] BLANCO-CLARACO J L, MORENO-DUENAS F A, GONZáLEZ-JIMéNEZ J. The Málaga urban dataset: high-rate stereo and LiDAR in a realistic urban scenario[J]. International Journal of Robotics Research, 2014, 33(2): 207-214. [48] CARLEVARIS-BIANCO N, USHANI A K, EUSTICE R M. University of Michigan North Campus long-term vision and LIDAR dataset[J]. The International Journal of Robotics Research, 2016, 35(9): 1023-1035. [49] MAJDIK A L, TILL C, SCARAMUZZA D. The Zurich urban micro aerial vehicle dataset[J]. The International Journal of Robotics Research, 2017, 36(3): 269-273. [50] MILLER M, CHUNG S J, HUTCHINSON S. The visual-inertial canoe dataset[J]. The International Journal of Robotics Research, 2018, 37(1): 13-20. [51] CHEN W, LIU Z, ZHAO H, et al. CUHK-AHU dataset: pro-moting practical self-driving applications in the complex airport logistics, hill and urban environments[C]//Procee-dings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Oct 24, 2020. Piscataway: IEEE, 2020: 4283-4288. [52] SCHUBERT D, GOLL T, DEMMEL N, et al. The TUM VI benchmark for evaluating visual-inertial odometry[C]//Procee-dings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Pisca-taway: IEEE, 2018: 1680-1687. [53] PFROMMER B, SANKET N, DANIILIDIS K, et al. Penn-COSYVIO: a challenging visual inertial odometry bench-mark[C]//Proceedings of the 2017 IEEE International Con-ference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 3847-3854. [54] REINA S C, SOLIN A, RAHTU E, et al. ADVIO: an authentic dataset for visual-inertial odometry[C]//LNCS 11214: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 425-440. [55] JINYU L, BANGBANG Y, DANPENG C, et al. Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality[J]. Virtual Reality & Intelligent Hard-ware, 2019, 1(4): 386-410. [56] WANG C, ZHAO Y, GUO J, et al. NEAR: the NetEase AR oriented visual inertial dataset[C]//Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct, Beijing, Oct 10-18, 2019. Piscataway: IEEE, 2019: 366-371. [57] ZU?IGA-NO?L D, JAENAL A, GOMEZ-OJEDA R, et al. The UMA-VI dataset: visual-inertial odometry in low-textured and dynamic illumination environments[J]. The International Journal of Robotics Research, 2020, 39(9): 1052-1060. [58] SONG Y, QIAN J, MIAO R, et al. HAUD: a high-accuracy underwater dataset for visual-inertial odometry[C]//Procee-dings of the 20th IEEE Sensors, Australia, Oct 31-Nov 3, 2021. Piscataway: IEEE, 2021: 1-4. [59] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robo-tics Research, 2016, 35(10): 1157-1163. [60] FERRERA M, CREUZE V, MORAS J, et al. AQUALOC: an underwater dataset for visual-inertial-pressure localiza-tion[J]. The International Journal of Robotics Research, 2019, 38(14): 1549-1559. [61] ANTONINI A, GUERRA W, MURALI V, et al. The black-bird UAV dataset[J]. The International Journal of Robotics Research, 2020, 39(10/11): 1346-1364. [62] CAO L, LING J, XIAO X. The WHU rolling shutter visual-inertial dataset[J]. IEEE Access, 2020, 8: 50771-50779. [63] MINODA K, SCHILLING F, WüEST V, et al. VIODE: a simulated dataset to address the challenges of visual-inertial odometry in dynamic environments[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1343-1350. [64] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2017, 39(6): 1137-1149. [65] SUN K, MOHTA K, PFROMMER B. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robo-tics and Automation Letters, 2018, 3(2): 965-972. [66] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3): 314-334. |
[1] | HU Shuo, YAO Meiyu, SUN Linna, WANG Jie, ZHOU Si'en. Accurate Visual Tracking with Attention Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 868-878. |
[2] | ZHU Ji, XIAO Xiaoli, YIN Bo, SUN Qian, TAN Dong. Bilinear Diffusion Graph Recommendation Model Fusing User Social Relations [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 826-836. |
[3] | QI Xin, YUAN Feiniu, SHI Jinting, WANG Guiqian. Semantic Segmentation Algorithm of Multi-level Feature Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932. |
[4] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[5] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[6] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[7] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[8] | XU Guangda, MAO Guojun. Aerial Image Object Detection of UAV Based on Multi-level Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 635-645. |
[9] | SHEN Huaiyan, WU Yun. Liver CT Image Segmentation Method Based on MSFA-Net [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656. |
[10] | LI Hongjin, PENG Li. High-Speed Tracking Algorithm Based on Siamese Network with Enhanced Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 396-408. |
[11] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[12] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[13] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[14] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[15] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/