
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (8): 2057-2084.DOI: 10.3778/j.issn.1673-9418.2503011
• Frontiers·Surveys • Previous Articles Next Articles
DONG Jiadong, SANG Feihu, GUO Qinghu, CHEN Lin, ZHENG Chunxiang
Online:2025-08-01
Published:2025-07-31
董甲东,桑飞虎,郭庆虎,陈琳,郑春香
DONG Jiadong, SANG Feihu, GUO Qinghu, CHEN Lin, ZHENG Chunxiang. Review of Lightweight Object Detection Algorithms Based on Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2057-2084.
董甲东, 桑飞虎, 郭庆虎, 陈琳, 郑春香. 基于深度学习的目标检测算法轻量化研究综述[J]. 计算机科学与探索, 2025, 19(8): 2057-2084.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2503011
| [1] HE C X, TAN S B, ZHAO J, et al. Efficient and lightweight neural network for hard hat detection[J]. Electronics, 2024, 13(13): 2507. [2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2025-02-10]. https://arxiv.org/abs/1409.1556. [3] CHEN F H, LI S L, HAN J L, et al. Review of lightweight deep convolutional neural networks[J]. Archives of Computational Methods in Engineering, 2024, 31(4): 1915-1937. [4] MITTAL P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices[J]. Artificial Intelligence Review, 2024, 57(9): 242. [5] 董甲东, 郭庆虎, 陈琳, 等. 深度学习中单阶段金属表面缺陷检测算法优化综述[J]. 计算机工程与应用, 2025, 61(4): 72-89. DONG J D, GUO Q H, CHEN L, et al. Review on optimization algorithms for one-stage metal surface defect detection in deep learning[J]. Computer Engineering and Applications, 2025, 61(4): 72-89. [6] KAUR R, SINGH S. A comprehensive review of object detection with deep learning[J]. Digital Signal Processing, 2023, 132: 103812. [7] CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758. [8] HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. [9] AHMED A, JALAL A, KIM K. Region and decision tree-based segmentations for multi-objects detection and classification in outdoor scenes[C]//Proceedings of the 2019 International Conference on Frontiers of Information Technology. Piscataway: IEEE, 2019: 209-214. [10] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001. [11] ALI S, HANZLA M, RAFIQUE A A. Vehicle detection and tracking from UAV imagery via cascade classifier[C]//Proceedings of the 2022 24th International Multitopic Conference. Piscataway: IEEE, 2022: 1-6. [12] LINDEBERG T. Scale invariant feature transform[J]. Scholarpedia, 2012, 7(5): 10491. [13] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. [14] TANG Z T, ZHANG Z M, CHEN W, et al. An SIFT-based fast image alignment algorithm for high-resolution image[J]. IEEE Access, 2023, 11: 42012-42041. [15] BARROS B, CONDE B, CABALEIRO M, et al. Design and testing of a decision tree algorithm for early failure detection in steel truss bridges[J]. Engineering Structures, 2023, 289: 116243. [16] ZHANG L, XU W Y, SHEN C, et al. Vision-based on-road nighttime vehicle detection and tracking using improved HOG features[J]. Sensors, 2024, 24(5): 1590. [17] ABBAS Q, ALBALAWI T S, PERUMAL G, et al. Automatic face recognition system using deep convolutional mixer architecture and AdaBoost classifier[J]. Applied Sciences, 2023, 13(17): 9880. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, 2012. [19] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [20] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [21] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. [22] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015. [23] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [24] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. [25] SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14449-14458. [26] XU X K, FENG Z J, CAO C Q, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote Sensing, 2021, 13(23): 4779. [27] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2117-2125. [28] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7036-7045. [29] 杨扬, 唐晓芬. ResFPN: 扩增实际感受野和改进FPN的多尺度目标检测方法[J]. 计算机工程与应用, 2025, 61(10): 247-257. YANG Y, TANG X F. ResFPN: multi-scale object detection algorithm for expanding actual receptive field and improving FPN[J]. Computer Engineering and Applications, 2025, 61(10): 247-257. [30] YU Y, YANG X, LI Q, et al. H2RBox-v2: incorporating symmetry for boosting horizontal box supervised oriented object detection[C]//Advances in Neural Information Processing Systems 36, 2023: 59137-59150. [31] 冷岳峰, 刘正, 徐宝祎, 等. 改进Faster R-CNN的钢材表面缺陷检测[J]. 机械科学与技术, 2025, 44(1): 75-83. LENG Y F, LIU Z, XU B Y, et al. Detection of steel surface defect based on improved faster R-CNN[J]. Mechanical Science and Technology for Aerospace Engineering, 2025, 44(1): 75-83. [32] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [33] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7263-7271. [34] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2025-02-10]. https://arxiv.org/abs/1804.02767. [35] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].[2025-02-10]. https://arxiv.org/abs/2004.10934. [36] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. [37] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2025-02-10]. https://arxiv.org/abs/2107.08430. [38] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL].[2025-02-10]. https://arxiv.org/abs/2209.02976. [39] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. [40] YASEEN M. What is YOLOv9: an in-depth exploration of the internal features of the next-generation object detector[EB/OL]. [2025-02-10]. https://arxiv.org/abs/2409.07813. [41] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want toLearn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21. [42] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[C]//Advances in Neural Information Processing Systems 37, 2025: 107984-108011. [43] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[EB/OL]. [2025-02-10]. https://arxiv.org/abs/2410.17725. [44] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [45] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2025-02-10]. https://arxiv.org/ abs/1701.06659. [46] JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[EB/OL].[2025-02-10]. https://arxiv.org/abs/1705.09587. [47] LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2025-02-10]. https://arxiv.org/abs/1712. 00960. [48] 董一兵, 曾辉, 侯少杰. LMUAV-YOLOv8: 低空无人机视觉目标检测轻量化网络[J]. 计算机工程与应用, 2025, 61(3): 94-110. DONG Y B, ZENG H, HOU S J. LMUAV-YOLOv8: lightweight network for object detection in low-altitude UAV vision[J]. Computer Engineering and Applications, 2025, 61(3): 94-110. [49] 雷景生, 章志豪, 钱小鸿, 等. 改进YOLOX的轻量级多方向车牌检测算法[J]. 计算机工程与应用, 2025, 61(4): 230-240. LEI J S, ZHANG Z H, QIAN X H, et al. Improved lightweight multi-directional license plate detection algorithm of YOLOX[J]. Computer Engineering and Applications, 2025, 61(4): 230-240. [50] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [51] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6568-6577. [52] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1922-1933. [53] WU B C, WAN A, IANDOLA F, et al. SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 446-454. [54] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. [55] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [56] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2025-02-10]. https://arxiv.org/abs/2010.04159. [57] DAI X Y, CHEN Y P, YANG J W, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2968-2977. [58] MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3631-3640. [59] LIU S, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. [2025-02-10]. https://arxiv.org/abs/2201.12329. [60] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13609-13617. [61] ZHANG M Y, SONG G L, LIU Y, et al. Decoupled DETR: spatially disentangling localization and classification for improved end-to-end object detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6578-6587. [62] ZHANG J Y, HUANG J X, LUO Z P, et al. DA-DETR: domain adaptive detection transformer with information fusion[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 23787-23798. [63] LI F, ZENG A L, LIU S L, et al. Lite DETR: an interleaved multi-scale encoder for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18558-18567. [64] ZHENG D H, DONG W H, HU H L, et al. Less is more: focus attention for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6651-6660. [65] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974. [66] ZHAO C Y, SUN Y F, WANG W H, et al. MS-DETR: efficient DETR training with mixed supervision[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 17027-17036. [67] 王鹏九, 龚俊斌, 罗威, 等. 基于改进Deformable DETR的水面目标检测[J]. 中国舰船研究, 2025, 20(3): 305-317. WANG P J, GONG J B, LUO W, et al. Dection of water surface targets based on improved Deformable DETR[J]. Chinese Journal of Ship Research, 2025, 20(3): 305-317. [68] 冯永安, 张紫扬, 张旭. 双重细化门控自适应融合的道路裂缝检测算法[J/OL]. 计算机科学与探索[2025-04-05]. https://kns.cnki.net/kcms/detail/11.5602.TP.20250320.1614.006.html. FENG Y A, ZHANG Z Y, ZHANG X. Dual refinement gate control adaptive fusion algorithm for road crack detection[J/OL]. Journal of Frontiers of Computer Science and Technology[2025-04-05]. https://kns.cnki.net/kcms/detail/11.5602. TP.20250320.1614.006.html. [69] LIU F L, ZHENG Q H, TIAN X Y, et al. Rethinking the multi-scale feature hierarchy in object detection transformer (DETR)[J]. Applied Soft Computing, 2025, 175: 113081. [70] CHEN H, TANG C F, HU X L. DHS-DETR: efficient DETRs with dynamic head switching[J]. Computer Vision and Image Understanding, 2024, 248: 104106. [71] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1704.04861. [72] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [73] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. [74] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2815-2823. [75] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2025: 78-96. [76] 肖振久, 杨晓迪, 魏宪, 等. 改进的轻量型网络在图像识别上的应用[J]. 计算机科学与探索, 2021, 15(4): 743-753. XIAO Z J, YANG X D, WEI X, et al. Improved lightweight network in image recognition[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 743-753. [77] JUNAYED M S, ISLAM M B, IMANI H, et al. PDS-Net: a novel point and depth-wise separable convolution for real-time object detection[J]. International Journal of Multimedia Information Retrieval, 2022, 11(2): 171-188. [78] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. [79] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 122-138. [80] YANG H J, LIU J X, MEI G M, et al. Research on real-time detection method of rail corrugation based on improved ShuffleNet V2[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106825. [81] ZHANG Y X, XIE W, YU X Y. Design and implementation of liveness detection system based on improved ShuffleNet V2[J]. Signal, Image and Video Processing, 2023, 17(6): 3035-3043. [82] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1602.07360. [83] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. [84] TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Advances in Neural Information Processing Systems 35, 2022: 9969-9982. [85] LIU Z, HAO Z, HAN K, et al. GhostNetV3: exploring the training strategies for compact models[EB/OL]. [2025-02-15]. https://arxiv.org/abs/2404.11202. [86] ARDIYANTO I. Edge devices-oriented surface defect segmentation by GhostNet fusion block and global auxiliary layer[J]. Journal of Real-Time Image Processing, 2023, 21(1): 13. [87] 王迎龙, 孙备, 丁冰, 等. BG-YOLO: 复杂大视场下低慢小无人机目标检测方法[J]. 仪器仪表学报, 2025, 46(2): 255-266. WANG Y L, SUN B, DING B, et al. BG-YOLO: a low-altitude slow-moving small UAV targets detection method in complex large field of view[J]. Chinese Journal of Scientific Instrument, 2025, 46(2): 255-266. [88] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6105-6114. [89] TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th?International Conference on Machine Learning, 2021: 10096-10106. [90] 卜晓燕, 张宪法, 李明慧, 等. 基于改进EfficientDet的飞机蒙皮缺陷检测方法[J]. 航空制造技术, 2025, 68(5): 68-75. BU X Y, ZHANG X F, LI M H, et al. Aircraft skin defect detection method based on improved EfficientDet[J]. Aeronautical Manufacturing Technology, 2025, 68(5): 68-75. [91] 田栋, 魏霞, 袁杰. 基于改进YOLOv5轻量化的车辆目标检测算法[J]. 计算机应用与软件, 2024, 41(12): 240-246. TIAN D, WEI X, YUAN J. Vehicle target detection algorithm based on improved YOLOv5 lightweight[J]. Computer Applications and Software, 2024, 41(12): 240-246. [92] CHEN J R, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031. [93] GUO A, SUN K Q, ZHANG Z Y. A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection[J]. Journal of Real-Time Image Processing, 2024, 21(2): 49. [94] DONG X, LI D, FANG J D. FCCD-SAR: a lightweight SAR ATR algorithm based on FasterNet[J]. Sensors, 2023, 23(15): 6956. [95] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703. [96] CHU Y Q, YU X Y, RONG X W. A lightweight strip steel surface defect detection network based on improved YOLOv8[J]. Sensors, 2024, 24(19): 6495. [97] 古莹奎, 叶彪彪, 郭明健, 等. 基于改进RT-DETR的饼干包装外观缺陷快速检测[J]. 食品与机械, 2025, 41(2): 234-241. GU Y K, YE B B, GUO M J, et al. Rapid detection method of biscuit packaging appearance defects based on improved RT-DETR[J]. Food & Machinery, 2025, 41(2): 234-241. [98] 葛雯, 邵钰琦, 屈乐乐. 面向遥感图像的轻量化小目标检测算法研究[J]. 电子测量技术, 2025, 48(4): 118-127. GE W, SHAO Y Q, QU L L. Research on lightweight small target detection algorithm for remote sensing images[J]. Electronic Measurement Technology, 2025, 48(4): 118-127. [99] 沈骞, 张磊, 张宇翔, 等. 基于改进YOLOv8n的轻量化分心驾驶行为检测方法[J]. 电子测量技术, 2024, 47(24): 65-75. SHEN Q, ZHANG L, ZHANG Y X, et al. Lightweight distracted driving behavior detection method based on improved YOLOv8n[J]. Electronic Measurement Technology, 2024, 47(24): 65-75. [100] 罗显志, 汪航. 跨尺度特征融合的无人机小目标检测算法[J/OL]. 计算机工程与应用[2025-04-05]. https://kns.cnki. net/kcms/detail/11.2127.tp.20250326.1510.018.html. LUO X Z, WANG H. Small target detection algorithm for UAV based on cross-scale feature fusion[J/OL]. Computer Engineering and Applications[2025-04-05]. https://kns.cnki.net/kcms/detail/11.2127.tp.20250326.1510.018.html. [101] 史丽晨, 杨超, 刘雪超, 等. 基于CDD-YOLO的轻量级低光照目标检测算法[J]. 计算机工程与应用, 2025, 61(6): 106-117. SHI L C, YANG C, LIU X C, et al. Lightweight low-light object detection algorithm based on CDD-YOLO[J]. Computer Engineering and Applications, 2025, 61(6): 106-117. [102] 钱尚乐, 曹伟, 高军伟. 基于改进YOLOv7-tiny的轻量化列车轮对踏面缺陷检测方法[J]. 光电子·激光, 2025, 36(7): 733-744. QIAN S L, CAO W, GAO J W. Lightweight train wheelset tread defect detection method based on improved YOLOv7-tiny[J]. Journal of Optoelectronics·Laser, 2025, 36(7): 733-744. [103] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [104] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [105] LI D, LI L, CHEN Z, et al. Shift-ConvNets: small convolutional kernel with large kernel effects[EB/OL]. [2025-02-15]. https://arxiv.org/abs/2401.12736. [106] HE X J, JIN J, JIANG Y, et al. A lightweight convolutional neural network-based feature extractor for visible images[J]. Computer Vision and Image Understanding, 2024, 249: 104157. [107] TANG A X, WANG Z Y, TIAN S G, et al. Series arc fault identification method based on lightweight convolutional neural network[J]. IEEE Access, 2024, 12: 5851-5863. [108] WANG H L, QIAN H M, FENG S, et al. L-SSD: lightweight SSD target detection based on depth-separable convolution[J]. Journal of Real-Time Image Processing, 2024, 21(2): 33. [109] ZHANG H, LAI S Q, WANG Y X, et al. SCGNet: shifting and cascaded group network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4997-5008. [110] 陈金荣, 许燕, 周建平, 等. 基于YOLO-SSAR的自然环境下红花检测算法[J]. 农业工程学报, 2025, 41(2): 215-223. CHEN J R, XU Y, ZHOU J P, et al. Detecting safflower in the natural environment using YOLO-SSAR[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(2): 215-223. [111] LECUN Y, DENKER J, SOLLA S. Optimal brain damage[C]//Advances in Neural Information Processing Systems 2, 1989. [112] HASSIBI B, STORK D. Second order derivatives for network pruning: optimal brain surgeon[C]//Advances in Neural Information Processing Systems 5, 1992. [113] SHI X, DING J, HAO Z, et al. Towards energy efficient spiking neural networks: an unstructured pruning framework[C]//Proceedings of the 12th International Conference on Learning Representations, 2024. [114] LUO J H, WU J X, LIN W Y. ThiNet: a filter level pruning method for deep neural network compression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5068-5076. [115] WANG B, KINDRATENKO V. RL-Pruner: structured pruning using reinforcement learning for CNN compression and acceleration[EB/OL]. [2025-02-15]. https://arxiv.org/abs/2411.06463. [116] FANG G F, MA X Y, SONG M L, et al. DepGraph: towards any structural pruning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16091-16101. [117] LIU Z, SUN M, ZHOU T, et al. Rethinking the value of network pruning[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1810.05270. [118] 亢洁, 常琦, 王勍, 等. 融合DepGraph偏移正则化的绝缘子多缺陷检测轻量化算法[J/OL]. 计算机工程与应用[2025-04-19]. https://kns.cnki.net/kcms/detail/11.2127.tp. 20250326.1741.031.html. KANG J, CHANG Q, WANG Q, et al. a lightweight algorithm for multi-defect detection in insulators with integrated DepGraph offset regularization[J/OL]. Computer Engineering and Applications[2025-04-19]. https://kns.cnki.net/kcms/detail/11.2127.tp.20250326.1741.031.html. [119] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1503.02531. [120] ZHAO B R, CUI Q, SONG R J, et al. Decoupled knowledge distillation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11943-11952. [121] YANG C G, ZHOU H L, AN Z L, et al. Cross-image relational knowledge distillation for semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12309-12318. [122] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3962-3971. [123] 王改华, 李柯鸿, 龙潜, 等. 基于知识蒸馏的轻量化Transformer目标检测[J]. 系统仿真学报, 2024, 36(11): 2517-2527. WANG G H, LI K H, LONG Q, et al. Object detection of lightweight transformer based on knowledge distillation[J]. Journal of System Simulation, 2024, 36(11): 2517-2527. [124] LIU H, SIMONYAN K, YANG Y. DARTS: differentiable architecture search[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1806. 09055. [125] RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10425-10433. [126] PHAM H, GUAN M, ZOPH B, et al. Efficient neural architecture search via parameters sharing[C]//Proceedings of the International Conference on Machine Learning, 2018: 4095-4104. [127] CI Y Z, LIN C, SUN M, et al. Evolving search space for neural architecture search[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6639-6649. [128] WANG L, FONSECA R, TIAN Y. Learning search space partition for black-box optimization using monte carlo tree search[C]//Advances in Neural Information Processing Systems 33, 2020: 19511-19522. [129] REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[C]//Proceedings of the International Conference on Machine Learning, 2017: 2902-2911. [130] ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8697-8710. [131] XU Y, XIE L, ZHANG X, et al. PC-DARTS: partial channel connections for memory-efficient architecture search[EB/OL]. [2025-02-15]. https://arxiv.org/abs/1907.05737. [132] YANG H, ZHANG Y S, YIN C B, et al. Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: a novel method to build the automatic recognition model of space target ISAR images[J]. Defence Technology, 2022, 18(6): 1073-1095. [133] BOUTROS F, SIEBKE P, KLEMT M, et al. PocketNet: extreme lightweight face recognition network using neural architecture search and multistep knowledge distillation[J]. IEEE Access, 2022, 10: 46823-46833. [134] LIU D C, YAMASAKI T, WANG Y, et al. Toward extremely lightweight distracted driver recognition with distillation-based neural architecture search and knowledge transfer[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 764-777. [135] 杨军, 韩鹏飞. 采用神经网络架构搜索的高分辨率遥感影像目标检测[J]. 吉林大学学报(工学版), 2024, 54(9): 2646-2657. YANG J, HAN P F. Object detection of high-resolution remote sensing images by neural architecture search[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(9): 2646-2657. [136] SHIN J, SO J, PARK S, et al. NIPQ: noise proxy-based integrated pseudo-quantization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3852-3861. [137] LIU J W, NIU L, YUAN Z H, et al. PD-quant: post-training quantization based on prediction difference metric[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24427-24437. [138] 陈俊杰, 陈哲宇, 郑子滨, 等. 基于FPGA的高能效纸板缺陷检测系统[J]. 计算机测量与控制, 2025, 33(1): 45-52. CHEN J J, CHEN Z Y, ZHENG Z B, et al. High-energy efficiency cardboard defect detection system based on FPGA[J]. Computer Measurement & Control, 2025, 33(1): 45-52. [139] YANG H R, TANG M X, WEN W, et al. Learning low-rank deep neural networks via singular vector orthogonality regularization and singular value sparsification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 2899-2908. [140] MO D M, WONG W K, LAI Z H, et al. Weighted double-low-rank decomposition with application to fabric defect detection[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(3): 1170-1190. [141] YIN M, SUI Y, LIAO S Y, et al. Towards efficient tensor decomposition-based DNN model compression with optimization framework[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10669-10678. [142] AHMED W, HAJIMOLAHOSEINI H, WEN A, et al. Speeding up resnet architecture with layers targeted low rank decomposition[EB/OL]. [2025-02-15]. https://arxiv.org/abs/2309.12412. [143] 林德铝, 刘畅, 陈琦, 等. 基于低秩分解的YOLO轻量化目标检测模型[J]. 机车电传动, 2024(1): 138-144. LIN D L, LIU C, CHEN Q, et al. Low-rank decomposition based lightweight YOLO model for the object detection [J]. Electric Drive for Locomotives, 2024(1): 138-144. [144] YANG F C, HUANG L D, TAN X W, et al. FasterNet-SSD: a small object detection method based on SSD model[J]. Signal, Image and Video Processing, 2024, 18(1): 173-180. [145] 岳永恒, 宁睿厚. 基于轻量化CenterNet的智能车辆目标检测算法[J]. 华南理工大学学报(自然科学版), 2024, 52(8): 45-55. YUE Y H, NING R H. Intelligent vehicle object detection algorithm based on lightweight CenterNet[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(8): 45-55. [146] 廖宁生, 曹天秀, 刘科言, 等. 复合特征与多尺度融合的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(3): 111-120. LIAO N S, CAO T X, LIU K Y, et al. Small target detection algorithm for UAV based on composite feature and multi-scale fusion[J]. Computer Engineering and Applications, 2025, 61(3): 111-120. [147] 林永洪, 郑建明, 李照. 基于UD-DETR轻量化网络小目标异物检测算法[J]. 信息化研究, 2025, 51(1): 71-78. LIN Y H, ZHENG J M, LI Z. UD-DETR: a lightweight network algorithm for the detection of small foreign objects[J]. Informatization Research, 2025, 51(1): 71-78. [148] 刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 59-78. LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 59-78. [149] 周赵轩, 曹岩. ZZX-YOLO: 改进YOLOv7-tiny的钢材缺陷检测算法[J/OL]. 计算机工程与应用[2025-04-05]. https://kns.cnki.net/kcms/detail/11.2127.tp.20250320.1327. 008.html. ZHOU Z X, CAO Y. ZZX-YOLO: improved YOLOv7-tiny steel defect detection algorithm[J/OL]. Computer Engineering and Applications[2025-04-05]. https://kns.cnki.net/kcms/detail/11.2127.tp.20250320.1327.008.html. [150] 胡玮, 赵菊敏, 李灯熬. 基于改进YOLOv7-Tiny的轻量化激光器芯片缺陷检测算法[J]. 太原理工大学学报, 2025, 56(1): 137-147. HU W, ZHAO J M, LI D A. A lightweight laser chip defect detection algorithm based on improved YOLOv7-tiny[J]. Journal of Taiyuan University of Technology, 2025, 56(1): 137-147. [151] 梁礼明, 龙鹏威, 卢宝贺, 等. EHH-YOLOv8s: 一种轻量级的带钢表面缺陷检测算法[J/OL]. 北京航空航天大学学报[2025-07-18]. https://doi.org/10.13700/j.bh.1001-5965. 2024.0426. LIANG L M, LONG P W, LU B H, et al. EHH-YOLOv8s: a lightweight algorithm for strip surface defect detection[J/OL]. Journal of Beijing University of Aeronautics and Astronautics[2025-07-18]. https://doi.org/10.13700/j.bh.1001- 5965.2024.0426. [152] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. [153] 刚帅, 刘培胜, 郭希旺. 改进基于YOLOv8n的轻量化钢材表面缺陷检测算法[J]. 电子测量技术, 2025, 48(3): 74-82. GANG S, LIU P S, GUO X W. Lightweight improved YOLOv8n model for steel defect detection features[J]. Electronic Measurement Technology, 2025, 48(3): 74-82. [154] 许晓阳, 高重阳. 改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83. XU X Y, GAO C Y. Improved YOLOv7-tiny lightweight infrared vehicle target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83. [155] 罗向龙, 吕温馨, 石镇岳, 等. 改进YOLOv8n的轻量化交通标志检测算法[J]. 激光与光电子学进展, 2025, 62(12): 422-433. LUO X L, Lü W X, SHI Z Y, et al. Improved lightweight traffic sign detection algorithm for YOLOv8n[J]. Laser & Optoelectronics Progress, 2025, 62(12): 422-433. [156] 刘菲, 钟延芬, 邱佳伟. 基于改进YOLOv5s的轻量化交通标志识别检测算法[J]. 激光与光电子学进展, 2024, 61(24): 102-114. LIU F, ZHONG Y F, QIU J W. Lightweight traffic sign recognition and detection algorithm based on improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2024, 61(24): 102-114. [157] 王泽宇, 徐慧英, 朱信忠, 等. 基于YOLOv8改进的密集行人检测算法: MER-YOLO[J]. 计算机工程与科学, 2024, 46(6): 1050-1062. WANG Z Y, XU H Y, ZHU X Z, et al. An improved dense pedestrian detection algorithm based on YOLOv8: MER-YOLO[J]. Computer Engineering & Science, 2024, 46(6): 1050-1062. [158] CHE C, ZHENG H, HUANG Z, et al. Intelligent robotic control system based on computer vision technology[EB/OL]. [2025-02-15]. https://arxiv.org/abs/2404.01116. [159] 熊其冰, 苗启广, 杨天, 等. 一种基于混合量子卷积神经网络的恶意代码检测方法[J]. 计算机科学, 2025, 52(3): 385-390. XIONG Q B, MIAO Q G, YANG T, et al. Malicious code detection method based on hybrid quantum convolutional neural network[J]. Computer Science, 2025, 52(3): 385-390. [160] 王东. 基于神经网络的人脸识别模型研究[J]. 科技创新与应用, 2024, 14(22): 5-8. WANG D. Research on face recognition model based on neural network[J]. Technology Innovation and Application, 2024, 14(22): 5-8. [161] 喇超, 李淼, 张峰, 等. 高能效CNN加速器设计[J/OL]. 计算机科学与探索[2025-02-27]. https://kns.cnki.net/kcms/detail/11.5602.TP.20250226.0956.002.html. LA C, LI M, ZHANG F, et al. MSNAP: a high efficiencies CNN accelerator[J/OL]. Journal of Frontiers of Computer Science and Technology[2025-02-27]. https://kns.cnki.net/kcms/detail/11.5602.TP.20250226.0956.002.html. [162] SAMANTA A, HATAI I, MAL A K. A survey on hardware accelerator design of deep learning for edge devices[J]. Wireless Personal Communications, 2024, 137(3): 1715-1760. [163] SUN K L, WANG X W, MIAO X, et al. A review of AI edge devices and lightweight CNN and LLM deployment[J]. Neurocomputing, 2025, 614: 128791. |
| [1] | WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362. |
| [2] | HUA Chunjian, YAO Yetao, JIANG Yi, YU Jianfeng, CHEN Ying. RGB-D Saliency Detection with Feature Enhancement and Progressive Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2419-2429. |
| [3] | YANG Bin, MA Tinghuai, HUANG Xuejian, WANG Yubo, WANG Zhaoming, ZHAO Bowen, YU Xin. Time Series Anomaly Detection Based on Spatio-Temporal Feature Fusion and Sequence Reconstruction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2384-2398. |
| [4] | LIU Xiaojia, CHEN Hongyu, YU Dexin, CHEN Yunjie, ZHOU Yuqin. Review of Trajectory Prediction for Autonomous Vehicles Based on Short-Term and Long-Term Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2363-2383. |
| [5] | MIN Feng, LIU Yuzhuo, LIU Yuhui, LIU Biao. Multivariate Time Series Prediction Model Based on Mixed Features of Time Domain and Frequency Domain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2099-2109. |
| [6] | HONG Wei, GENG Peilin, WANG Hongyu, ZHANG Xueqin, GU Chunhua. Local Dynamic Clean-Label Backdoor Attack with Image Salience Regions [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2229-2240. |
| [7] | ZHANG Yifei, LI Yanling, GE Fengpei. Review of Legal Judgment Prediction Based on Graph Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2024-2042. |
| [8] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [9] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [10] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [11] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [12] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [13] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [14] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [15] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/